亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Vehicle running attitude prediction model based on Artificial Neural Network-Parallel Connected (ANN-PL) in the single-vehicle collision

人工神经网络 多体系统 碰撞 模拟 均方误差 计算机科学 偏移量(计算机科学) 流离失所(心理学) 人工智能 工程类 结构工程 数学 统计 物理 量子力学 计算机安全 心理学 程序设计语言 心理治疗师
作者
Tuo Xu,Ping Xu,Hui Zhao,Chengxing Yang,Yong Peng
出处
期刊:Advances in Engineering Software [Elsevier BV]
卷期号:175: 103356-103356 被引量:12
标识
DOI:10.1016/j.advengsoft.2022.103356
摘要

Artificial neural networks have drawn growing attention for their outstanding predictive capability combined with traditional research methods. This paper aims to propose a vehicle running attitude prediction model based on Artificial Neural Network-Parallel Connected (ANN-PL), predicting the longitudinal displacement (Svx) and vertical displacement (Svz) of the vehicle body, the vehicle head-up angle (α), and the overriding risk (Cd). The 3D multibody dynamics model (MBD) of the single-vehicle impact on the rigid wall, namely 3D-MBD-SV, was established and validated by the experimental full-scale vehicle collision test. Based on the reliable 3D-MBD-SV, the design of experiment (DOE) approach was carried out to obtain the datasets for training the ANN-PL. The ANN-PL exhibited excellent computational efficiency and satisfactory prediction accuracy compared to the multibody dynamics and finite element simulation calculation methods. However, the different network hyperparameters of the ANN-PL network are essential to prediction accuracy, considering the number of hidden layers and neurons in this paper. In terms of the variables factor analysis, the change of Mean Square Error (MSE) method (COM) in the ANN-PL was used to explore the relationship between the eleven essential input variables and vehicle running attitude. It was found that the maximum relative contribution in ANN-PL (Svx, Svz, α, Cd) is vehicle body mass (Mc) at 70.65%, impact velocity (Vx) at 43.39%, vertical offset of the vehicle body center mass (CMz) at 30.14%, and primary suspension axle box spring vertical travel (Dpz) at 13.63%, respectively. The outcome of this study is expected to provide a research method to solve the complicated engineering issue by building a new artificial neural network algorithmic framework combined with the multibody dynamics and finite element simulation calculation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YBR完成签到 ,获得积分10
1秒前
2秒前
9秒前
科研通AI5应助tudounaodai采纳,获得30
10秒前
mzc完成签到 ,获得积分10
11秒前
man完成签到 ,获得积分10
11秒前
搜集达人应助殷勤的斓采纳,获得10
12秒前
陨_0614发布了新的文献求助10
14秒前
研友_8Y26PL完成签到 ,获得积分10
18秒前
20秒前
黑巧的融化完成签到 ,获得积分10
22秒前
spc完成签到,获得积分10
22秒前
殷勤的斓发布了新的文献求助10
26秒前
tudounaodai完成签到,获得积分10
26秒前
张晓祁完成签到,获得积分10
27秒前
leslie完成签到,获得积分10
29秒前
lanze完成签到,获得积分10
31秒前
yueying完成签到,获得积分10
31秒前
32秒前
35秒前
Ava应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
HEIKU应助HDrinnk采纳,获得10
35秒前
Harish完成签到,获得积分10
38秒前
xxxxxxx发布了新的文献求助10
40秒前
44秒前
小马甲应助粽子采纳,获得10
46秒前
liushuyu发布了新的文献求助10
50秒前
51秒前
55秒前
风趣依波发布了新的文献求助10
56秒前
Luna完成签到 ,获得积分10
1分钟前
JamesPei应助甜甜的越泽采纳,获得10
1分钟前
迷你的靖雁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Xin应助风扇转的好快采纳,获得10
1分钟前
1分钟前
舒萼完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758087
求助须知:如何正确求助?哪些是违规求助? 3301027
关于积分的说明 10116061
捐赠科研通 3015479
什么是DOI,文献DOI怎么找? 1656067
邀请新用户注册赠送积分活动 790234
科研通“疑难数据库(出版商)”最低求助积分说明 753749