Vehicle running attitude prediction model based on Artificial Neural Network-Parallel Connected (ANN-PL) in the single-vehicle collision

人工神经网络 多体系统 碰撞 模拟 均方误差 计算机科学 偏移量(计算机科学) 流离失所(心理学) 人工智能 工程类 结构工程 数学 统计 物理 量子力学 计算机安全 心理学 程序设计语言 心理治疗师
作者
Tuo Xu,Ping Xu,Hui Zhao,Chengxing Yang,Yong Peng
出处
期刊:Advances in Engineering Software [Elsevier]
卷期号:175: 103356-103356 被引量:12
标识
DOI:10.1016/j.advengsoft.2022.103356
摘要

Artificial neural networks have drawn growing attention for their outstanding predictive capability combined with traditional research methods. This paper aims to propose a vehicle running attitude prediction model based on Artificial Neural Network-Parallel Connected (ANN-PL), predicting the longitudinal displacement (Svx) and vertical displacement (Svz) of the vehicle body, the vehicle head-up angle (α), and the overriding risk (Cd). The 3D multibody dynamics model (MBD) of the single-vehicle impact on the rigid wall, namely 3D-MBD-SV, was established and validated by the experimental full-scale vehicle collision test. Based on the reliable 3D-MBD-SV, the design of experiment (DOE) approach was carried out to obtain the datasets for training the ANN-PL. The ANN-PL exhibited excellent computational efficiency and satisfactory prediction accuracy compared to the multibody dynamics and finite element simulation calculation methods. However, the different network hyperparameters of the ANN-PL network are essential to prediction accuracy, considering the number of hidden layers and neurons in this paper. In terms of the variables factor analysis, the change of Mean Square Error (MSE) method (COM) in the ANN-PL was used to explore the relationship between the eleven essential input variables and vehicle running attitude. It was found that the maximum relative contribution in ANN-PL (Svx, Svz, α, Cd) is vehicle body mass (Mc) at 70.65%, impact velocity (Vx) at 43.39%, vertical offset of the vehicle body center mass (CMz) at 30.14%, and primary suspension axle box spring vertical travel (Dpz) at 13.63%, respectively. The outcome of this study is expected to provide a research method to solve the complicated engineering issue by building a new artificial neural network algorithmic framework combined with the multibody dynamics and finite element simulation calculation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忆之完成签到,获得积分10
刚刚
秦斌斌发布了新的文献求助10
1秒前
小雨完成签到,获得积分10
1秒前
erwasong完成签到,获得积分10
1秒前
2秒前
2秒前
秦罗敷完成签到,获得积分10
3秒前
3秒前
就将计就计完成签到,获得积分10
3秒前
勤劳初雪应助fk采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
yhb发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
乔治的恐龙完成签到 ,获得积分10
5秒前
蓝天发布了新的文献求助10
5秒前
黄启烽发布了新的文献求助10
6秒前
6秒前
小熊完成签到,获得积分10
6秒前
hello_dundun完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
要钱的房东完成签到,获得积分10
7秒前
cfy完成签到,获得积分10
7秒前
7秒前
南北发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
mika发布了新的文献求助10
9秒前
Tong123发布了新的文献求助10
9秒前
自觉沛文完成签到,获得积分10
9秒前
Twonej应助风清扬采纳,获得50
9秒前
小刺猬完成签到,获得积分10
9秒前
111117发布了新的文献求助10
10秒前
面面完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751092
求助须知:如何正确求助?哪些是违规求助? 5466905
关于积分的说明 15368802
捐赠科研通 4890277
什么是DOI,文献DOI怎么找? 2629616
邀请新用户注册赠送积分活动 1577855
关于科研通互助平台的介绍 1534083