Vehicle running attitude prediction model based on Artificial Neural Network-Parallel Connected (ANN-PL) in the single-vehicle collision

人工神经网络 多体系统 碰撞 模拟 均方误差 计算机科学 偏移量(计算机科学) 流离失所(心理学) 人工智能 工程类 结构工程 数学 统计 物理 量子力学 计算机安全 心理学 程序设计语言 心理治疗师
作者
Tuo Xu,Ping Xu,Hui Zhao,Chengxing Yang,Yong Peng
出处
期刊:Advances in Engineering Software [Elsevier]
卷期号:175: 103356-103356 被引量:12
标识
DOI:10.1016/j.advengsoft.2022.103356
摘要

Artificial neural networks have drawn growing attention for their outstanding predictive capability combined with traditional research methods. This paper aims to propose a vehicle running attitude prediction model based on Artificial Neural Network-Parallel Connected (ANN-PL), predicting the longitudinal displacement (Svx) and vertical displacement (Svz) of the vehicle body, the vehicle head-up angle (α), and the overriding risk (Cd). The 3D multibody dynamics model (MBD) of the single-vehicle impact on the rigid wall, namely 3D-MBD-SV, was established and validated by the experimental full-scale vehicle collision test. Based on the reliable 3D-MBD-SV, the design of experiment (DOE) approach was carried out to obtain the datasets for training the ANN-PL. The ANN-PL exhibited excellent computational efficiency and satisfactory prediction accuracy compared to the multibody dynamics and finite element simulation calculation methods. However, the different network hyperparameters of the ANN-PL network are essential to prediction accuracy, considering the number of hidden layers and neurons in this paper. In terms of the variables factor analysis, the change of Mean Square Error (MSE) method (COM) in the ANN-PL was used to explore the relationship between the eleven essential input variables and vehicle running attitude. It was found that the maximum relative contribution in ANN-PL (Svx, Svz, α, Cd) is vehicle body mass (Mc) at 70.65%, impact velocity (Vx) at 43.39%, vertical offset of the vehicle body center mass (CMz) at 30.14%, and primary suspension axle box spring vertical travel (Dpz) at 13.63%, respectively. The outcome of this study is expected to provide a research method to solve the complicated engineering issue by building a new artificial neural network algorithmic framework combined with the multibody dynamics and finite element simulation calculation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rayc应助超越好帅采纳,获得10
1秒前
lijinbei完成签到,获得积分10
1秒前
和谐飞飞完成签到,获得积分10
1秒前
bmhs2017完成签到 ,获得积分0
1秒前
nibaba发布了新的文献求助10
1秒前
笑点低涟妖完成签到,获得积分10
2秒前
丶Dawn发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
脑洞疼应助分隔符采纳,获得10
4秒前
4秒前
4秒前
pancake发布了新的文献求助30
4秒前
4秒前
4秒前
Ava应助elf采纳,获得10
4秒前
5秒前
nbtzy完成签到,获得积分10
5秒前
可爱的函函应助凯恩采纳,获得10
5秒前
5秒前
5秒前
TOF发布了新的文献求助10
6秒前
7秒前
超越好帅完成签到,获得积分20
8秒前
想发sci发布了新的文献求助10
8秒前
可乐发布了新的文献求助10
9秒前
程程发布了新的文献求助10
9秒前
lvzhechen发布了新的文献求助10
9秒前
欣慰从云发布了新的文献求助30
10秒前
LYY发布了新的文献求助10
10秒前
acd完成签到,获得积分10
10秒前
江枫渔火VC完成签到 ,获得积分10
10秒前
10秒前
11秒前
在水一方应助kjwu采纳,获得10
11秒前
典雅的静发布了新的文献求助10
11秒前
11秒前
崔雪峰发布了新的文献求助10
11秒前
可爱的函函应助瓜瓜采纳,获得10
12秒前
黄大小姐完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728