指示
离域电子
电离
化学
双电离
离子
原子物理学
质子
分子间力
分子
光离子化
二聚体
化学物理
物理
量子力学
有机化学
作者
Jiaqi Zhou,Michal Belina,Shaokui Jia,Xiaorui Xue,Xintai Hao,Xueguang Ren,Petr Slavı́ček
标识
DOI:10.1021/acs.jpclett.2c02560
摘要
We investigate the ultrafast energy and charge transfer processes between ammonia molecules following ionization reactions initiated by electron impact. Exploring ionization-induced processes in molecular clusters provides us with a detailed insight into the dynamics using experiments in the energy domain. We ionize the ammonia dimer with 200 eV electrons and apply the fragment ions coincident momentum spectroscopy and nonadiabatic molecular dynamics simulations. We identify two mechanisms leading to the doubly charged ammonia dimer. In the first one, a single molecule is ionized. This initiates an ultrafast proton transfer process, leading to the formation of the NH2+ + NH4+ pair. Alternatively, a dimer with a delocalized charge is formed dominantly via the intermolecular Coulombic decay, forming the NH3+·NH3+ dication. This dication further dissociates into two NH3+ cations. The ab initio calculations have reproduced the measured kinetic energy release of the ion pairs and revealed the dynamical processes following the double ionization.
科研通智能强力驱动
Strongly Powered by AbleSci AI