Learning Feature Descriptors for Pre- and Intra-operative Point Cloud Matching for Laparoscopic Liver Registration

计算机科学 兰萨克 人工智能 点云 特征(语言学) 初始化 能见度 任务(项目管理) 匹配(统计) 点(几何) 图像配准 计算机视觉 模式识别(心理学) 直方图 图像(数学) 数学 光学 物理 统计 哲学 语言学 经济 管理 程序设计语言 几何学
作者
Zixin Yang,Richard Simon,Cristian A. Linte
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2211.03688
摘要

Purpose: In laparoscopic liver surgery (LLS), pre-operative information can be overlaid onto the intra-operative scene by registering a 3D pre-operative model to the intra-operative partial surface reconstructed from the laparoscopic video. To assist with this task, we explore the use of learning-based feature descriptors, which, to our best knowledge, have not been explored for use in laparoscopic liver registration. Furthermore, a dataset to train and evaluate the use of learning-based descriptors does not exist. Methods: We present the LiverMatch dataset consisting of 16 preoperative models and their simulated intra-operative 3D surfaces. We also propose the LiverMatch network designed for this task, which outputs per-point feature descriptors, visibility scores, and matched points. Results: We compare the proposed LiverMatch network with anetwork closest to LiverMatch, and a histogram-based 3D descriptor on the testing split of the LiverMatch dataset, which includes two unseen pre-operative models and 1400 intra-operative surfaces. Results suggest that our LiverMatch network can predict more accurate and dense matches than the other two methods and can be seamlessly integrated with a RANSAC-ICP-based registration algorithm to achieve an accurate initial alignment. Conclusion: The use of learning-based feature descriptors in LLR is promising, as it can help achieve an accurate initial rigid alignment, which, in turn, serves as an initialization for subsequent non-rigid registration. We will release the dataset and code upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呆呆完成签到,获得积分10
刚刚
左一酱完成签到 ,获得积分10
1秒前
平淡南霜发布了新的文献求助10
1秒前
Sweet关注了科研通微信公众号
1秒前
1秒前
赘婿应助wangfu采纳,获得10
2秒前
2秒前
2秒前
pipge完成签到,获得积分20
2秒前
3秒前
澳澳发布了新的文献求助10
3秒前
4秒前
清脆的映天完成签到,获得积分10
4秒前
yl驳回了sweetbearm应助
4秒前
隐形曼青应助2鱼采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
香蕉觅云应助junzilan采纳,获得10
5秒前
张老涵发布了新的文献求助10
5秒前
灌饼发布了新的文献求助30
5秒前
罗实发布了新的文献求助10
5秒前
张张发布了新的文献求助10
6秒前
木香发布了新的文献求助10
6秒前
朴实以松发布了新的文献求助10
6秒前
在水一方应助神帅酷哥采纳,获得10
6秒前
7秒前
7秒前
pipge发布了新的文献求助30
7秒前
7秒前
万能图书馆应助卡卡采纳,获得10
7秒前
牛虫虫发布了新的文献求助30
8秒前
8秒前
柔弱飞雪完成签到,获得积分10
8秒前
一种信仰完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
YE完成签到,获得积分10
10秒前
2鱼完成签到,获得积分10
10秒前
FooLeup立仔完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794