同质结
纳米棒
异质结
光电流
材料科学
纳米技术
载流子
光催化
光电子学
化学工程
化学
生物化学
工程类
催化作用
作者
Hewei Si,Lilan Zou,Gu Huang,Jianjun Liao,Shiwei Lin
标识
DOI:10.1016/j.jcis.2022.10.066
摘要
It is important to achieve high photoelectrochemical (PEC) oxygen evolution performance in titanium oxide (TiO2) via the separation and transportation of photogenerated carriers. Herein, three-dimensional (3D) TiO2 nanorod arrays growing on flexible carbon cloth (CC) were decorated with graphitic carbon nitride (g-C3N4) to yield a 3D g-C3N4/TiO2/CC heterojunction composite (TCN). The photocurrent density of TCN is 10.6 times that of the bare TiO2 nanorod arrays, which can be attributed to the promoted separation and transportation of photogenerated carriers by the heterojunction. Then, a simple rapid cooling and heating (RCH) treatment was creatively introduced to form a gradient Ti3+ self-doping TiO2 multiple homojunction (GTSD-TiO2) in the bulk during the hydrothermal growth of the TiO2 nanorod array. This can further facilitate the separation and transportation of carriers in the bulk owing to the formation of a built-in electric field. The GTSD-TiO2 was decorated with g-C3N4 to form a core-shell heterojunction composite (GTSD-TCN). Notably, the photocurrent density of the GTSD-TCN core-shell heterojunction reached 1.23 mA cm-2 at 1.23 V (vs reversible hydrogen electrode (RHE)) under air mass (AM) 1.5 G illumination without the use of hole scavengers or cocatalysts; this was twice the photocurrent density of the TCN heterojunction (0.64 mA cm-2) and is one of the best values obtained from the previously reported TiO2 and g-C3N4 heterojunction. This performance may be ascribed to the enhanced charge separation and transportation efficiency of the heterojunction after the RCH treatment; the efficiency rises from 51 % (TCN) to 71 % (GTSD-TCN). We believe that the RCH treatment is a highly promising method towards fabricating unique multiple homojunctions by gradient self-doping. This simple and novel design provides a new route for the preparation of high-performance PEC photoelectrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI