Adversarial Label-Poisoning Attacks and Defense for General Multi-Class Models Based on Synthetic Reduced Nearest Neighbor

计算机科学 k-最近邻算法 人工智能 模型攻击 对手 班级(哲学) 机器学习 对抗制 数据挖掘 模式识别(心理学) 计算机安全
作者
Pooya Tavallali,Vahid Behzadan,Azar Alizadeh,Aditya Ranganath,Mukesh Singhal
标识
DOI:10.1109/icip46576.2022.9897807
摘要

Machine learning models are vulnerable to data poisoning attacks whose purpose is to undermine the model's integrity. However, the current literature on data poisoning attacks mainly focuses on ad hoc techniques that are generally limited to either binary classifiers or to gradient-based algorithms. To address these limitations, we propose a novel model-free label-flipping attack based on the multi-modality of the data, in which the adversary targets the clusters of classes while constrained by a label-flipping budget. The complexity of our proposed attack algorithm is linear in time over the size of the dataset. Also, the proposed attack can increase the error up to two times for the same attack budget. Second, a novel defense technique is proposed based on the Synthetic Reduced Nearest Neighbor model. The defense technique can detect and exclude flipped samples on the fly during the training procedure. Our empirical analysis demonstrates that (i) the proposed attack technique can deteriorate the accuracy of several models drastically, and (ii) under the proposed attack, the proposed defense technique significantly outperforms other conventional machine learning models in recovering the accuracy of the targeted model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助霸气剑通采纳,获得10
1秒前
merlinsong发布了新的文献求助10
2秒前
2秒前
3秒前
花花发布了新的文献求助10
3秒前
Walker完成签到,获得积分10
3秒前
华仔应助落寞的采文采纳,获得10
4秒前
青鱼发布了新的文献求助10
4秒前
lignin完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
TIANEO完成签到,获得积分20
5秒前
cytomix完成签到,获得积分10
5秒前
orixero应助年轻的冰淇淋采纳,获得10
5秒前
清新王老吉完成签到,获得积分10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助30
7秒前
默默海露完成签到,获得积分20
7秒前
Vicky1111完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
BUG完成签到,获得积分10
9秒前
邓施展关注了科研通微信公众号
9秒前
11秒前
Cloud发布了新的文献求助10
11秒前
万能图书馆应助布吉岛采纳,获得10
12秒前
12秒前
迅速翠风关注了科研通微信公众号
13秒前
青鱼发布了新的文献求助10
13秒前
青鱼发布了新的文献求助10
13秒前
青鱼发布了新的文献求助10
13秒前
青鱼发布了新的文献求助10
13秒前
青鱼发布了新的文献求助10
13秒前
简化为完成签到,获得积分10
13秒前
飞翔的鸣发布了新的文献求助10
13秒前
Sea_shark发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425