已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adversarial Label-Poisoning Attacks and Defense for General Multi-Class Models Based on Synthetic Reduced Nearest Neighbor

计算机科学 k-最近邻算法 人工智能 模型攻击 对手 班级(哲学) 机器学习 对抗制 数据挖掘 模式识别(心理学) 计算机安全
作者
Pooya Tavallali,Vahid Behzadan,Azar Alizadeh,Aditya Ranganath,Mukesh Singhal
标识
DOI:10.1109/icip46576.2022.9897807
摘要

Machine learning models are vulnerable to data poisoning attacks whose purpose is to undermine the model's integrity. However, the current literature on data poisoning attacks mainly focuses on ad hoc techniques that are generally limited to either binary classifiers or to gradient-based algorithms. To address these limitations, we propose a novel model-free label-flipping attack based on the multi-modality of the data, in which the adversary targets the clusters of classes while constrained by a label-flipping budget. The complexity of our proposed attack algorithm is linear in time over the size of the dataset. Also, the proposed attack can increase the error up to two times for the same attack budget. Second, a novel defense technique is proposed based on the Synthetic Reduced Nearest Neighbor model. The defense technique can detect and exclude flipped samples on the fly during the training procedure. Our empirical analysis demonstrates that (i) the proposed attack technique can deteriorate the accuracy of several models drastically, and (ii) under the proposed attack, the proposed defense technique significantly outperforms other conventional machine learning models in recovering the accuracy of the targeted model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助xixixi采纳,获得20
刚刚
刚刚
刚刚
默默的发布了新的文献求助10
3秒前
勇敢牛牛完成签到 ,获得积分10
3秒前
4秒前
yiwan发布了新的文献求助10
4秒前
4秒前
Psy_chi发布了新的文献求助10
5秒前
7秒前
8秒前
mogekkko发布了新的文献求助10
9秒前
雨相所至发布了新的文献求助10
9秒前
10秒前
丘比特应助PhdL采纳,获得30
10秒前
大乐完成签到,获得积分10
11秒前
YZ发布了新的文献求助10
11秒前
香芋完成签到 ,获得积分10
12秒前
lx完成签到,获得积分10
13秒前
Ava应助coolkid采纳,获得10
13秒前
完美世界应助xxs采纳,获得30
14秒前
14秒前
小马甲应助张莜莜采纳,获得10
18秒前
玻璃杯完成签到 ,获得积分10
18秒前
欢喜关注了科研通微信公众号
18秒前
19秒前
19秒前
21秒前
22秒前
隐形曼青应助Anthonyp采纳,获得10
23秒前
23秒前
24秒前
FashionBoy应助hxjnx采纳,获得10
24秒前
Twinkle发布了新的文献求助10
25秒前
wanci应助mermaid采纳,获得10
25秒前
tbc发布了新的文献求助30
25秒前
26秒前
汉堡包应助wu采纳,获得30
28秒前
千枫茂榕发布了新的文献求助10
29秒前
晓晓鹤发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627406
求助须知:如何正确求助?哪些是违规求助? 4713679
关于积分的说明 14962084
捐赠科研通 4784593
什么是DOI,文献DOI怎么找? 2554835
邀请新用户注册赠送积分活动 1516330
关于科研通互助平台的介绍 1476693