已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adversarial Label-Poisoning Attacks and Defense for General Multi-Class Models Based on Synthetic Reduced Nearest Neighbor

计算机科学 k-最近邻算法 人工智能 模型攻击 对手 班级(哲学) 机器学习 对抗制 数据挖掘 模式识别(心理学) 计算机安全
作者
Pooya Tavallali,Vahid Behzadan,Azar Alizadeh,Aditya Ranganath,Mukesh Singhal
标识
DOI:10.1109/icip46576.2022.9897807
摘要

Machine learning models are vulnerable to data poisoning attacks whose purpose is to undermine the model's integrity. However, the current literature on data poisoning attacks mainly focuses on ad hoc techniques that are generally limited to either binary classifiers or to gradient-based algorithms. To address these limitations, we propose a novel model-free label-flipping attack based on the multi-modality of the data, in which the adversary targets the clusters of classes while constrained by a label-flipping budget. The complexity of our proposed attack algorithm is linear in time over the size of the dataset. Also, the proposed attack can increase the error up to two times for the same attack budget. Second, a novel defense technique is proposed based on the Synthetic Reduced Nearest Neighbor model. The defense technique can detect and exclude flipped samples on the fly during the training procedure. Our empirical analysis demonstrates that (i) the proposed attack technique can deteriorate the accuracy of several models drastically, and (ii) under the proposed attack, the proposed defense technique significantly outperforms other conventional machine learning models in recovering the accuracy of the targeted model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助徐嘎嘎采纳,获得10
1秒前
1秒前
1秒前
1秒前
舒适的方盒完成签到 ,获得积分10
1秒前
JaneChen发布了新的文献求助10
1秒前
2秒前
qqer完成签到,获得积分10
3秒前
冥王星发布了新的文献求助10
3秒前
Manta完成签到,获得积分10
4秒前
Hello应助执着的觅露采纳,获得30
4秒前
7秒前
7秒前
开心依珊发布了新的文献求助10
7秒前
孟晓晖完成签到 ,获得积分10
7秒前
10秒前
kk完成签到,获得积分10
10秒前
11秒前
djxdjt发布了新的文献求助10
11秒前
jjdeng发布了新的文献求助10
12秒前
orixero应助jimskylxk采纳,获得10
12秒前
今后应助caoyy采纳,获得10
13秒前
尝原完成签到,获得积分10
13秒前
科研通AI6.1应助小明采纳,获得10
13秒前
Aimee发布了新的文献求助30
15秒前
lydia完成签到,获得积分10
16秒前
开心依珊完成签到,获得积分20
16秒前
17秒前
大模型应助Vincent采纳,获得10
19秒前
21秒前
26秒前
大个应助柍踏采纳,获得10
26秒前
27秒前
29秒前
Jasper应助高挑的梦芝采纳,获得10
31秒前
zhangyafei完成签到,获得积分10
31秒前
caoyy发布了新的文献求助10
32秒前
psy完成签到,获得积分10
33秒前
Lucas应助呼斯冷采纳,获得10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771909
求助须知:如何正确求助?哪些是违规求助? 5594239
关于积分的说明 15428487
捐赠科研通 4905096
什么是DOI,文献DOI怎么找? 2639208
邀请新用户注册赠送积分活动 1587085
关于科研通互助平台的介绍 1541964