Adversarial Label-Poisoning Attacks and Defense for General Multi-Class Models Based on Synthetic Reduced Nearest Neighbor

计算机科学 k-最近邻算法 人工智能 模型攻击 对手 班级(哲学) 机器学习 对抗制 数据挖掘 模式识别(心理学) 计算机安全
作者
Pooya Tavallali,Vahid Behzadan,Azar Alizadeh,Aditya Ranganath,Mukesh Singhal
标识
DOI:10.1109/icip46576.2022.9897807
摘要

Machine learning models are vulnerable to data poisoning attacks whose purpose is to undermine the model's integrity. However, the current literature on data poisoning attacks mainly focuses on ad hoc techniques that are generally limited to either binary classifiers or to gradient-based algorithms. To address these limitations, we propose a novel model-free label-flipping attack based on the multi-modality of the data, in which the adversary targets the clusters of classes while constrained by a label-flipping budget. The complexity of our proposed attack algorithm is linear in time over the size of the dataset. Also, the proposed attack can increase the error up to two times for the same attack budget. Second, a novel defense technique is proposed based on the Synthetic Reduced Nearest Neighbor model. The defense technique can detect and exclude flipped samples on the fly during the training procedure. Our empirical analysis demonstrates that (i) the proposed attack technique can deteriorate the accuracy of several models drastically, and (ii) under the proposed attack, the proposed defense technique significantly outperforms other conventional machine learning models in recovering the accuracy of the targeted model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蓝天发布了新的文献求助10
2秒前
2秒前
3秒前
揣一袋星星糖完成签到,获得积分10
3秒前
王阳完成签到,获得积分20
3秒前
shinn发布了新的文献求助10
4秒前
Ranch0完成签到,获得积分10
4秒前
4秒前
开心快乐水完成签到 ,获得积分10
5秒前
领导范儿应助动听凌柏采纳,获得10
5秒前
眯眯眼的松鼠完成签到,获得积分10
5秒前
FashionBoy应助安输采纳,获得10
5秒前
6秒前
坦率导师sw完成签到,获得积分10
6秒前
lzy发布了新的文献求助10
6秒前
五六七完成签到,获得积分10
6秒前
田様应助有害学术辣鸡采纳,获得10
7秒前
7秒前
7秒前
陌人归完成签到 ,获得积分10
8秒前
专注雨珍完成签到,获得积分10
8秒前
wy.he应助结实大雁采纳,获得10
9秒前
9秒前
科研通AI6.1应助鲜艳的遥采纳,获得10
9秒前
彭新铭完成签到,获得积分10
9秒前
Charles_Rowan发布了新的文献求助10
9秒前
科目三应助阿皓要发nature采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
草莓熊发布了新的文献求助10
10秒前
无花果应助wmzskye采纳,获得10
10秒前
SciGPT应助MOMO采纳,获得10
10秒前
Xin完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
Hello应助zzt采纳,获得10
12秒前
Herisland发布了新的文献求助10
12秒前
su发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776395
求助须知:如何正确求助?哪些是违规求助? 5629084
关于积分的说明 15442414
捐赠科研通 4908542
什么是DOI,文献DOI怎么找? 2641276
邀请新用户注册赠送积分活动 1589232
关于科研通互助平台的介绍 1543882