Adversarial Label-Poisoning Attacks and Defense for General Multi-Class Models Based on Synthetic Reduced Nearest Neighbor

计算机科学 k-最近邻算法 人工智能 模型攻击 对手 班级(哲学) 机器学习 对抗制 数据挖掘 模式识别(心理学) 计算机安全
作者
Pooya Tavallali,Vahid Behzadan,Azar Alizadeh,Aditya Ranganath,Mukesh Singhal
标识
DOI:10.1109/icip46576.2022.9897807
摘要

Machine learning models are vulnerable to data poisoning attacks whose purpose is to undermine the model's integrity. However, the current literature on data poisoning attacks mainly focuses on ad hoc techniques that are generally limited to either binary classifiers or to gradient-based algorithms. To address these limitations, we propose a novel model-free label-flipping attack based on the multi-modality of the data, in which the adversary targets the clusters of classes while constrained by a label-flipping budget. The complexity of our proposed attack algorithm is linear in time over the size of the dataset. Also, the proposed attack can increase the error up to two times for the same attack budget. Second, a novel defense technique is proposed based on the Synthetic Reduced Nearest Neighbor model. The defense technique can detect and exclude flipped samples on the fly during the training procedure. Our empirical analysis demonstrates that (i) the proposed attack technique can deteriorate the accuracy of several models drastically, and (ii) under the proposed attack, the proposed defense technique significantly outperforms other conventional machine learning models in recovering the accuracy of the targeted model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张完成签到,获得积分10
刚刚
1秒前
1秒前
小布丁发布了新的文献求助10
1秒前
GinaLundhild06应助陌然浅笑采纳,获得10
1秒前
在水一方应助luxiuzhen采纳,获得10
1秒前
2秒前
3秒前
呜呜呜呜发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
ken发布了新的文献求助10
4秒前
大模型应助李李李采纳,获得10
5秒前
sn完成签到,获得积分10
5秒前
yy应助张张采纳,获得20
6秒前
超大鹅发布了新的文献求助10
6秒前
深情安青应助寒冬采纳,获得10
8秒前
飞123发布了新的文献求助10
8秒前
夏冰发布了新的文献求助10
8秒前
柠檬柠檬发布了新的文献求助10
8秒前
脑洞疼应助Feathamity采纳,获得10
8秒前
闪闪无敌发布了新的文献求助10
8秒前
晚灯君完成签到 ,获得积分0
9秒前
赘婿应助卧镁铀钳采纳,获得10
9秒前
素素发布了新的文献求助10
11秒前
11秒前
上官若男应助心秦采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
所所应助晴云采纳,获得10
13秒前
呜呜呜呜完成签到,获得积分20
13秒前
在水一方应助wenwliu采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
vchen0621发布了新的文献求助10
15秒前
海浪完成签到 ,获得积分10
16秒前
16秒前
Nemo完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675761
求助须知:如何正确求助?哪些是违规求助? 4948864
关于积分的说明 15154614
捐赠科研通 4835061
什么是DOI,文献DOI怎么找? 2589850
邀请新用户注册赠送积分活动 1543573
关于科研通互助平台的介绍 1501325