Adversarial Label-Poisoning Attacks and Defense for General Multi-Class Models Based on Synthetic Reduced Nearest Neighbor

计算机科学 k-最近邻算法 人工智能 模型攻击 对手 班级(哲学) 机器学习 对抗制 数据挖掘 模式识别(心理学) 计算机安全
作者
Pooya Tavallali,Vahid Behzadan,Azar Alizadeh,Aditya Ranganath,Mukesh Singhal
标识
DOI:10.1109/icip46576.2022.9897807
摘要

Machine learning models are vulnerable to data poisoning attacks whose purpose is to undermine the model's integrity. However, the current literature on data poisoning attacks mainly focuses on ad hoc techniques that are generally limited to either binary classifiers or to gradient-based algorithms. To address these limitations, we propose a novel model-free label-flipping attack based on the multi-modality of the data, in which the adversary targets the clusters of classes while constrained by a label-flipping budget. The complexity of our proposed attack algorithm is linear in time over the size of the dataset. Also, the proposed attack can increase the error up to two times for the same attack budget. Second, a novel defense technique is proposed based on the Synthetic Reduced Nearest Neighbor model. The defense technique can detect and exclude flipped samples on the fly during the training procedure. Our empirical analysis demonstrates that (i) the proposed attack technique can deteriorate the accuracy of several models drastically, and (ii) under the proposed attack, the proposed defense technique significantly outperforms other conventional machine learning models in recovering the accuracy of the targeted model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI5应助应如是采纳,获得10
4秒前
7秒前
科目三应助无莞采纳,获得10
8秒前
金蛋蛋完成签到 ,获得积分10
8秒前
莫骐榕发布了新的文献求助10
8秒前
9秒前
qian完成签到 ,获得积分10
10秒前
10秒前
ying关注了科研通微信公众号
10秒前
浮游应助xu1227采纳,获得10
12秒前
13秒前
Gengsai完成签到,获得积分10
14秒前
无水乙醚发布了新的文献求助10
14秒前
14秒前
kyo发布了新的文献求助10
15秒前
kk完成签到,获得积分10
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助20
20秒前
今后应助yuqinghui98采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得50
21秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
LaTeXer应助科研通管家采纳,获得100
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
ephore应助科研通管家采纳,获得150
22秒前
wanci应助科研通管家采纳,获得10
22秒前
LaTeXer应助科研通管家采纳,获得100
22秒前
烟花应助科研通管家采纳,获得10
22秒前
LaTeXer应助科研通管家采纳,获得100
22秒前
22秒前
22秒前
Owen应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914543
求助须知:如何正确求助?哪些是违规求助? 4188864
关于积分的说明 13009265
捐赠科研通 3957739
什么是DOI,文献DOI怎么找? 2169910
邀请新用户注册赠送积分活动 1188108
关于科研通互助平台的介绍 1095792