Adversarial Label-Poisoning Attacks and Defense for General Multi-Class Models Based on Synthetic Reduced Nearest Neighbor

计算机科学 k-最近邻算法 人工智能 模型攻击 对手 班级(哲学) 机器学习 对抗制 数据挖掘 模式识别(心理学) 计算机安全
作者
Pooya Tavallali,Vahid Behzadan,Azar Alizadeh,Aditya Ranganath,Mukesh Singhal
标识
DOI:10.1109/icip46576.2022.9897807
摘要

Machine learning models are vulnerable to data poisoning attacks whose purpose is to undermine the model's integrity. However, the current literature on data poisoning attacks mainly focuses on ad hoc techniques that are generally limited to either binary classifiers or to gradient-based algorithms. To address these limitations, we propose a novel model-free label-flipping attack based on the multi-modality of the data, in which the adversary targets the clusters of classes while constrained by a label-flipping budget. The complexity of our proposed attack algorithm is linear in time over the size of the dataset. Also, the proposed attack can increase the error up to two times for the same attack budget. Second, a novel defense technique is proposed based on the Synthetic Reduced Nearest Neighbor model. The defense technique can detect and exclude flipped samples on the fly during the training procedure. Our empirical analysis demonstrates that (i) the proposed attack technique can deteriorate the accuracy of several models drastically, and (ii) under the proposed attack, the proposed defense technique significantly outperforms other conventional machine learning models in recovering the accuracy of the targeted model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
关关过应助yuk采纳,获得20
1秒前
东晓发布了新的文献求助10
1秒前
1秒前
1秒前
lyyyyyyyy发布了新的文献求助10
1秒前
1秒前
SciGPT应助tangli采纳,获得10
2秒前
Buduan发布了新的文献求助10
2秒前
2秒前
头哥应助rj采纳,获得10
2秒前
颜靖仇完成签到,获得积分10
2秒前
边宇发布了新的文献求助10
3秒前
内向问旋发布了新的文献求助10
4秒前
4秒前
4秒前
Hanoi347应助陶醉的绮山采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
dada完成签到,获得积分10
5秒前
hhh发布了新的文献求助10
6秒前
6秒前
愉快的莹发布了新的文献求助10
6秒前
6秒前
孙泉发布了新的文献求助10
6秒前
金乌完成签到 ,获得积分10
7秒前
彭于晏应助吉不得采纳,获得10
7秒前
孤傲的静脉完成签到,获得积分10
7秒前
7秒前
远方完成签到 ,获得积分10
7秒前
华仔应助王艺霖采纳,获得10
7秒前
7秒前
昭昭如愿完成签到,获得积分20
7秒前
8秒前
luluzheng应助PDIF-CN2采纳,获得10
8秒前
火柴two发布了新的文献求助10
8秒前
9秒前
初夏的百褶裙完成签到,获得积分10
9秒前
cruel发布了新的文献求助10
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444