Comparing the structure and functionality of amyloid fibrils assembled from peanut, pea, lentil, and mung bean proteins

纤维 淀粉样纤维 化学 生物物理学 豆类 淀粉样蛋白(真菌学) 生物化学 生物 植物 淀粉样β 医学 病理 无机化学 疾病
作者
Derek R. Dee,Bu Fan,Shi Lan-Fang,Sara Zamani
标识
DOI:10.21748/kkyn7687
摘要

Protein structure dictates functionality, and one way to dramatically alter protein structure is to induce proteins to self-assemble into amyloid fibrils. Amyloid fibrils, or nanofibrils, are long (100–1000’s nm), narrow (10’s nm), highly-organized protein aggregates that hold promise for various applications in biotechnology and food. Converting plant proteins into fibrils may improve their functionality and create sustainable materials, yet most nanofibril research has focused on animal-derived proteins, so there is a need to learn more about fibrils derived from plant proteins. This project compared fibrils assembled from crude protein extracts from peanut, pea, lentils and mung bean, comparing their fibril assembly kinetics, fibril structure, emulsification and viscosity properties. Peanut and mung bean fibrils assembled much faster (kPeanut = 0.90 ± 0.40 h-1, kMungbean = 0.95 ± 0.40 h-1) compared to pea and lentil fibrils (kPea = 0.19 ± 0.03 h-1, kLentil = 0.24 ± 0.01 h-1), at 80 °C, pH 2 with stirring. Fibrils from the different legume proteins displayed markedly different structures that could be generally classified as either long and straight (1000’s nm) or short and curly (100’s nm). The former are more similar to fibrils typically generated from animal proteins (e.g., whey, egg white proteins) while the latter are typical of legume protein fibrils presented in the literature. The longer/straighter or shorter/curly fibrils displayed unique functionalities (emulsion particle size and viscosity profiles) that did not directly correlate with fibril morphology, although several confounding factors limit the establishment of direct structure-function associations. This work indicates several approaches to optimize the assembly of legume protein fibrils that may find use in new plant-based materials and foods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助莹亮的星空采纳,获得10
刚刚
星辰与月完成签到,获得积分10
1秒前
华仔应助luohan采纳,获得10
3秒前
A溶大美噶完成签到,获得积分10
4秒前
传奇3应助灵巧翠桃采纳,获得10
5秒前
yyy完成签到,获得积分10
5秒前
6秒前
尘埃之影完成签到,获得积分10
7秒前
香蕉觅云应助张志迪采纳,获得30
7秒前
basil完成签到 ,获得积分10
8秒前
yqy-123完成签到,获得积分10
8秒前
ljc完成签到 ,获得积分10
9秒前
yao chen完成签到,获得积分10
9秒前
hh完成签到,获得积分10
9秒前
顷梦完成签到,获得积分10
10秒前
moming完成签到,获得积分10
10秒前
MZ完成签到,获得积分0
11秒前
三磷酸腺苷完成签到 ,获得积分10
11秒前
花蕊完成签到 ,获得积分10
11秒前
fuguier完成签到,获得积分10
11秒前
程程完成签到,获得积分10
11秒前
上官醉山发布了新的文献求助10
12秒前
烯灯完成签到,获得积分10
12秒前
xiaotaiyang发布了新的文献求助10
12秒前
13秒前
ymj完成签到,获得积分10
13秒前
舒适的石头完成签到,获得积分10
13秒前
13秒前
小巧的柚子完成签到,获得积分10
14秒前
plant完成签到,获得积分10
14秒前
eric完成签到 ,获得积分10
15秒前
汕头凯奇完成签到,获得积分10
16秒前
霍楠完成签到,获得积分10
16秒前
cbz完成签到,获得积分10
16秒前
激昂的中心完成签到,获得积分10
18秒前
再见了星空完成签到,获得积分10
18秒前
乐观的忆枫完成签到,获得积分10
19秒前
金金发布了新的文献求助10
19秒前
19秒前
chen完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303379
求助须知:如何正确求助?哪些是违规求助? 2937701
关于积分的说明 8482937
捐赠科研通 2611606
什么是DOI,文献DOI怎么找? 1426076
科研通“疑难数据库(出版商)”最低求助积分说明 662539
邀请新用户注册赠送积分活动 647026