去酰胺
工作流程
生物制药
关键质量属性
计算机科学
色谱法
化学
生化工程
计算生物学
生物技术
数据库
工程类
生物化学
生物
粒径
酶
物理化学
作者
Amita Puranik,Pratap Rasam,Prajakta Dandekar,Ratnesh Jain
标识
DOI:10.1016/j.ab.2022.114969
摘要
The growing complexity of novel biopharmaceutical formats, such as Fc-fusion proteins, in increasingly competitive environment has highlighted the need of high-throughput analytical platforms. Multi-attribute method (MAM) is an emerging analytical technology that utilizes liquid chromatography coupled with mass spectrometry to monitor critical quality attributes (CQAs) in biopharmaceuticals. MAM is intended to supplement or replace the conventional chromatographic and electrophoretic approaches used for quality control and drug release purpose. In this investigation, we have developed an agile sample preparation approach for deploying MAM workflow for a complex VEGFR-targeted therapeutic Fc-fusion protein. Initially, a systematic time course evaluation of tryptic digestion step was performed to achieve maximum amino acid sequence coverage of >96.5%, in a short duration of 2 h, with minimum assay artifacts. This approach facilitated precise identification of five sites of N-glycosylation with successful monitoring of other CQAs such as deamidation, oxidation, etc. Subsequently, the developed MAM workflow with suitable tryptic digestion time was qualified according to the International council for harmonisation (i.e. ICH) Q2R1 guidelines for method validation. Post-validation, the analytical workflow was also evaluated for its capability to identify unknown moieties, termed as 'New Peak Detection' (i.e. NPD), and assess fold change between the reference and non-reference samples, in a representative investigation of pH stress study. The study, thus, demonstrated the suitability of the MAM workflow for characterization of heavily glycosylated Fc-fusion proteins. Moreover, its NPD feature could offer an all-encompassing view if applied for forced degradation and stability studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI