LNGAT: local neighborhood graph attention network

计算机科学 注意力网络 图形 理论计算机科学 随机几何图 几何网络 图形属性 节点(物理) 人工智能 电压图 复杂网络 折线图 结构工程 工程类 万维网
作者
Yukuan Sun,Haoran Ma,Young‐Bae Ko,Jianming Wang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:31 (05) 被引量:1
标识
DOI:10.1117/1.jei.31.5.053034
摘要

Graph attention network (GAT) is a promising framework to perform aggregation and massage passing on graphs. GATs attention layer extracts the attention coefficients mainly using node features of the current node. But, we believe that attention can be obtained directly from the structural information of the graph. We argue that local graph structures play a dominant role for calculating good attention coefficients and propose a structure-based graph attention layer called local neighborhood graph attention layer (LNGAL). Different from GAT, LNGAL obtains attention only by local graph structural information and abandons the dependence on the features of nodes, which calculates the attention coefficients directly from theoretical formulas, instead of training with labeled data. In LNGAL, the first-order neighborhood of the current node provides a primary contribution to the calculation of attention coefficients, while the second-order neighborhood plays a fine-tune role. Furthermore, we introduce the proposed LNGAL to a multi-scale architecture and design a novel network called local neighborhood graph attention network (LNGAT). In the experimental section, we show that LNGAT network outperforms several recently proposed graph convolutional network-like models and achieves state-of-the-art performance on six open graph datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搞怪羊发布了新的文献求助10
刚刚
刚刚
WC发布了新的文献求助10
1秒前
1秒前
1秒前
小马儿完成签到 ,获得积分10
1秒前
执着的刺猬关注了科研通微信公众号
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
Y先生应助科研通管家采纳,获得20
2秒前
怎么说应助科研通管家采纳,获得10
2秒前
YSJ应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
3秒前
烟花应助科研通管家采纳,获得10
3秒前
MchemG应助科研通管家采纳,获得30
3秒前
Y先生应助科研通管家采纳,获得20
3秒前
kingwill应助科研通管家采纳,获得20
3秒前
3秒前
大个应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
鲤鱼鸽子应助科研通管家采纳,获得10
3秒前
3秒前
夏宇应助科研通管家采纳,获得10
3秒前
夏宇应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得30
3秒前
英姑应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
4秒前
wu8577应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
研友_ngkyGn应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352