亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effect of transfer learning on the performance of VGGNet-16 and ResNet-50 for the classification of organic and residual waste

残差神经网络 学习迁移 残余物 深度学习 计算机科学 人工智能 废弃物 F1得分 环境科学 机器学习 废物管理 工程类 算法
作者
Fangfang Wu,Hao Lin
出处
期刊:Frontiers in Environmental Science [Frontiers Media]
卷期号:10 被引量:6
标识
DOI:10.3389/fenvs.2022.1043843
摘要

It is crucial to realize the municipal solid waste (MSW) classification in terms of its treatments and disposals. Deep learning used for the classification of residual waste and wet waste from MSW was considered as a promising method. While few studies reported using the method of deep learning with transfer learning to classify organic waste and residual waste. Thus, this study aims to discuss the effect of the transfer learning on the performance of different deep learning structures, VGGNet-16 and ResNet-50, for the classification of organic waste and residual waste, which were compared in terms of the training time, confusion matric, accuracy, precision, and recall. In addition, the algorithms of PCA and t-SNE were also adopted to compare the representation extracted from the last layer of various deep learning models. Results indicated that transfer learning could shorten the training time and the training time of various deep learning follows this order: VGGNet-16 (402 s) > VGGNet-16 with TL (272 s) > ResNet-50 (238 s) > ResNet-50 with TL (223 s). Compared with the method of PAC, waste representations were better separated from high dimension to low dimension by t-SNE. The values of organic waste in terms of F1 score follows this order: ResNet-50 with transfer learning (97.8%) > VGGNet-16 with transfer learning (97.1%) > VGGNet-16 (95.0%) > ResNet-50 (92.5%).Therefore, the best performance for the classification of organic and residual waste was ResNet-50 with transfer learning, followed by VGGNet-16 with transfer learning and VGGNet-16, and ResNet-50 in terms of accuracy, precision, recall, and F1 score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助zzzzqqqq采纳,获得10
2秒前
10秒前
shuoliu完成签到 ,获得积分10
10秒前
北地风情完成签到 ,获得积分10
10秒前
zzzzqqqq发布了新的文献求助10
14秒前
zzzzqqqq完成签到,获得积分20
18秒前
19秒前
20秒前
25秒前
香蕉觅云应助呆萌的访枫采纳,获得10
27秒前
伊祁夜明完成签到,获得积分10
28秒前
li发布了新的文献求助10
30秒前
li完成签到,获得积分10
37秒前
40秒前
一个好昵称完成签到 ,获得积分10
40秒前
43秒前
一日落叶发布了新的文献求助10
46秒前
搜集达人应助光轮2000采纳,获得10
52秒前
57秒前
hahahan完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
丛士乔完成签到 ,获得积分10
1分钟前
星辰大海应助cjfc采纳,获得10
1分钟前
000发布了新的文献求助10
1分钟前
光轮2000发布了新的文献求助10
1分钟前
uery完成签到,获得积分10
1分钟前
蓝胖子发布了新的文献求助10
1分钟前
1分钟前
香豆素完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
典雅绮兰完成签到 ,获得积分10
1分钟前
cjfc发布了新的文献求助10
1分钟前
NexusExplorer应助mm采纳,获得10
1分钟前
lijiawei完成签到,获得积分10
1分钟前
1分钟前
Ava应助cjfc采纳,获得10
1分钟前
Mr完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603230
求助须知:如何正确求助?哪些是违规求助? 4688306
关于积分的说明 14853219
捐赠科研通 4687948
什么是DOI,文献DOI怎么找? 2540480
邀请新用户注册赠送积分活动 1506962
关于科研通互助平台的介绍 1471508