流体体积法
气泡
机械
聚结(物理)
计算流体力学
计算机科学
流量(数学)
物理
天体生物学
作者
Christian Mulbah,Can Kang,Ning Mao,Wei Zhang,Ali Raza Shaikh,Shuang Teng
标识
DOI:10.1016/j.pnucene.2022.104478
摘要
The bubbly flow is encountered in many industrial processes. Numerical efforts dedicated to the explanation of the bubbly flow physics have never been overemphasized. Based on the computational fluid dynamics (CFD) technique, the volume of fluid (VOF) method has been adopted to predict flow phenomena in nuclear reactors. For the VOF method, a volume fraction transport equation is solved simultaneously with a set of continuity and momentum equations throughout the computational domain. The VOF method is relatively reliable but could produce inaccurate interface curvatures due to the shortage of the volume fraction step function in smoothening discontinuous quantities near the interface. In view of this, the present study summarizes recent development of the VOF method. The strategies coupling the VOF method and other specific methods are discussed. A comprehensive explanation of numerically obtained bubble behaviors such as detachment, rising, deformation, and coalescence is provided. Applications of the VOF method in describing various bubble characteristics are reviewed. Available data shows that simulations of bubble dynamics and interfacial behaviors still call for irrefutable clarifications. Furthermore, this study serves as a benchmark resource for selecting an appropriate VOF method in related research.
科研通智能强力驱动
Strongly Powered by AbleSci AI