Construction of Autophagy-Related Gene Classifier for Early Diagnosis, Prognosis and Predicting Immune Microenvironment Features in Sepsis by Machine Learning Algorithms

免疫系统 生物 分类器(UML) 败血症 自噬 计算生物学 机器学习 获得性免疫系统 支持向量机 人工智能 免疫学 生物信息学 计算机科学 遗传学 细胞凋亡
作者
Zhen Chen,Liming Zeng,Genglong Liu,Yangpeng Ou,Chuangang Lu,Ben Yang,Liuer Zuo
出处
期刊:Journal of Inflammation Research [Dove Medical Press]
卷期号:Volume 15: 6165-6186 被引量:18
标识
DOI:10.2147/jir.s386714
摘要

The immune system plays a fundamental role in the pathophysiology of sepsis, and autophagy and autophagy-related molecules are crucial in innate and adaptive immune responses; however, the potential roles of autophagy-related genes (ARGs) in sepsis are not comprehensively understood. A systematic search was conducted in ArrayExpress and Gene Expression Omnibus (GEO) cohorts from July 2005 to May 2022. Machine learning approaches, including modified Lasso penalized regression, support vector machine, and artificial neural network, were applied to identify hub ARGs, thereby developing a prediction model termed ARG classifier. Diagnostic and prognostic performance of the model was comprehensively analyzed using multi-transcriptome data. Subsequently, we systematically correlated the ARG classifier/hub ARGs with immunological characteristics of multiple aspects, including immune cell infiltration, immune and molecular pathways, cytokine levels, and immune-related genes. Further, we collected clinical specimens to preliminarily investigate ARG expression levels and to assess the diagnostic performance of ARG classifier. A total of ten GEO and three ArrayExpress datasets were included in this study. Based on machine learning algorithms, eight key ARGs (ATG4C, BAX, BIRC5, ERBB2, FKBP1B, HIF1A, NCKAP1, and NFKB1) were integrated to establish ARG classifier. The model exhibited excellent diagnostic values (AUC > 0.85) in multiple datasets and multiple points in time and superiorly distinguished sepsis from other critical illnesses. ARG classifier showed significant correlations with clinical characteristics or endotypes and performed better in predicting mortality (AUC = 0.70) than other clinical characteristics. Additionally, the identified hub ARGs were significantly associated with immune cell infiltration (B, T, NK, dendritic, T regulatory, and myeloid-derived suppressor cells), immune and molecular pathways (inflammation-promoting pathways, HLA, cytolytic activity, apoptosis, type-II IFN response, complement and coagulation cascades), levels of several cytokines (PDGFRB, IL-10, IFNG, and TNF), which indicated that ARG classifier/hub ARGs adequately reflected the immune microenvironment during sepsis. Finally, using clinical specimens, the expression levels of key ARGs in patients with sepsis were found to differ significantly from those of control patients, and ARG classifier exhibited superior diagnostic performance, compared to procalcitonin and C-reactive protein. Collectively, a diagnostic and prognostic model (ARG classifier) based on eight ARGs was developed which may assist clinicians in diagnosis of sepsis and recognizing patient at high risk to guide personalized treatment. Additionally, the ARG classifier effectively reflected the immune microenvironment diversity of sepsis and may facilitate personalized counseling for specific therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助闪闪飞柏采纳,获得10
1秒前
方法发布了新的文献求助10
3秒前
3秒前
小二郎应助yhx046采纳,获得10
5秒前
5秒前
6秒前
TT发布了新的文献求助10
10秒前
11秒前
科研通AI2S应助哈哈哈采纳,获得30
12秒前
小二郎应助赵医生采纳,获得10
13秒前
完美世界应助方法采纳,获得10
13秒前
13秒前
14秒前
平常的半凡应助Jiaowen采纳,获得10
15秒前
您得疼完成签到,获得积分20
16秒前
孤独箴言发布了新的文献求助10
17秒前
端庄乐松发布了新的文献求助10
18秒前
您得疼发布了新的文献求助10
18秒前
Akim应助CABBAGE采纳,获得10
20秒前
20秒前
环游世界完成签到 ,获得积分10
21秒前
21秒前
彭于彦祖应助七月采纳,获得20
22秒前
JIE完成签到 ,获得积分10
23秒前
23秒前
TT完成签到,获得积分10
23秒前
Decline发布了新的文献求助10
25秒前
爆米花应助您得疼采纳,获得10
25秒前
洪焕良发布了新的文献求助10
28秒前
28秒前
29秒前
赵医生完成签到,获得积分10
29秒前
SciGPT应助THEO采纳,获得10
31秒前
付艳完成签到,获得积分10
31秒前
沉默以山完成签到,获得积分20
31秒前
Decline完成签到 ,获得积分10
34秒前
SciGPT应助科研通管家采纳,获得10
34秒前
上官若男应助Lujiamingfei采纳,获得10
34秒前
Owen应助科研通管家采纳,获得10
34秒前
沧笙踏歌应助科研通管家采纳,获得10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962932
求助须知:如何正确求助?哪些是违规求助? 3508908
关于积分的说明 11143865
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791700
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803579