Construction of Autophagy-Related Gene Classifier for Early Diagnosis, Prognosis and Predicting Immune Microenvironment Features in Sepsis by Machine Learning Algorithms

免疫系统 生物 分类器(UML) 败血症 自噬 计算生物学 机器学习 获得性免疫系统 支持向量机 人工智能 免疫学 生物信息学 计算机科学 遗传学 细胞凋亡
作者
Zhen Chen,Liming Zeng,Genglong Liu,Yangpeng Ou,Chuangang Lu,Ben Yang,Liuer Zuo
出处
期刊:Journal of Inflammation Research [Dove Medical Press]
卷期号:Volume 15: 6165-6186 被引量:18
标识
DOI:10.2147/jir.s386714
摘要

The immune system plays a fundamental role in the pathophysiology of sepsis, and autophagy and autophagy-related molecules are crucial in innate and adaptive immune responses; however, the potential roles of autophagy-related genes (ARGs) in sepsis are not comprehensively understood. A systematic search was conducted in ArrayExpress and Gene Expression Omnibus (GEO) cohorts from July 2005 to May 2022. Machine learning approaches, including modified Lasso penalized regression, support vector machine, and artificial neural network, were applied to identify hub ARGs, thereby developing a prediction model termed ARG classifier. Diagnostic and prognostic performance of the model was comprehensively analyzed using multi-transcriptome data. Subsequently, we systematically correlated the ARG classifier/hub ARGs with immunological characteristics of multiple aspects, including immune cell infiltration, immune and molecular pathways, cytokine levels, and immune-related genes. Further, we collected clinical specimens to preliminarily investigate ARG expression levels and to assess the diagnostic performance of ARG classifier. A total of ten GEO and three ArrayExpress datasets were included in this study. Based on machine learning algorithms, eight key ARGs (ATG4C, BAX, BIRC5, ERBB2, FKBP1B, HIF1A, NCKAP1, and NFKB1) were integrated to establish ARG classifier. The model exhibited excellent diagnostic values (AUC > 0.85) in multiple datasets and multiple points in time and superiorly distinguished sepsis from other critical illnesses. ARG classifier showed significant correlations with clinical characteristics or endotypes and performed better in predicting mortality (AUC = 0.70) than other clinical characteristics. Additionally, the identified hub ARGs were significantly associated with immune cell infiltration (B, T, NK, dendritic, T regulatory, and myeloid-derived suppressor cells), immune and molecular pathways (inflammation-promoting pathways, HLA, cytolytic activity, apoptosis, type-II IFN response, complement and coagulation cascades), levels of several cytokines (PDGFRB, IL-10, IFNG, and TNF), which indicated that ARG classifier/hub ARGs adequately reflected the immune microenvironment during sepsis. Finally, using clinical specimens, the expression levels of key ARGs in patients with sepsis were found to differ significantly from those of control patients, and ARG classifier exhibited superior diagnostic performance, compared to procalcitonin and C-reactive protein. Collectively, a diagnostic and prognostic model (ARG classifier) based on eight ARGs was developed which may assist clinicians in diagnosis of sepsis and recognizing patient at high risk to guide personalized treatment. Additionally, the ARG classifier effectively reflected the immune microenvironment diversity of sepsis and may facilitate personalized counseling for specific therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可耐的嫣娆完成签到,获得积分10
1秒前
无花果应助hzz采纳,获得10
1秒前
音悦台发布了新的文献求助30
2秒前
5秒前
threewei完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
清欢完成签到 ,获得积分10
7秒前
8秒前
xixun关注了科研通微信公众号
8秒前
9秒前
9秒前
解语花发布了新的文献求助50
10秒前
啊啊啊完成签到,获得积分10
11秒前
小琛完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
15秒前
15秒前
36038138完成签到 ,获得积分10
17秒前
XRenaissance发布了新的文献求助10
18秒前
搬砖发布了新的文献求助10
19秒前
19秒前
酱紫完成签到 ,获得积分10
19秒前
淡定妙海发布了新的文献求助10
19秒前
NexusExplorer应助盖世汤圆采纳,获得20
20秒前
20秒前
Azyyyy完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助30
21秒前
21秒前
陈昇发布了新的文献求助10
21秒前
cccf发布了新的文献求助100
22秒前
23秒前
冯俊驰发布了新的文献求助10
24秒前
海马成长痛完成签到,获得积分10
24秒前
丘比特应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
李健应助科研通管家采纳,获得10
27秒前
搜集达人应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408