Construction of Autophagy-Related Gene Classifier for Early Diagnosis, Prognosis and Predicting Immune Microenvironment Features in Sepsis by Machine Learning Algorithms

免疫系统 生物 分类器(UML) 败血症 自噬 计算生物学 机器学习 获得性免疫系统 支持向量机 人工智能 免疫学 生物信息学 计算机科学 遗传学 细胞凋亡
作者
Zhen Chen,Liming Zeng,Genglong Liu,Yangpeng Ou,Chuangang Lu,Ben Yang,Liuer Zuo
出处
期刊:Journal of Inflammation Research [Dove Medical Press]
卷期号:Volume 15: 6165-6186 被引量:18
标识
DOI:10.2147/jir.s386714
摘要

The immune system plays a fundamental role in the pathophysiology of sepsis, and autophagy and autophagy-related molecules are crucial in innate and adaptive immune responses; however, the potential roles of autophagy-related genes (ARGs) in sepsis are not comprehensively understood. A systematic search was conducted in ArrayExpress and Gene Expression Omnibus (GEO) cohorts from July 2005 to May 2022. Machine learning approaches, including modified Lasso penalized regression, support vector machine, and artificial neural network, were applied to identify hub ARGs, thereby developing a prediction model termed ARG classifier. Diagnostic and prognostic performance of the model was comprehensively analyzed using multi-transcriptome data. Subsequently, we systematically correlated the ARG classifier/hub ARGs with immunological characteristics of multiple aspects, including immune cell infiltration, immune and molecular pathways, cytokine levels, and immune-related genes. Further, we collected clinical specimens to preliminarily investigate ARG expression levels and to assess the diagnostic performance of ARG classifier. A total of ten GEO and three ArrayExpress datasets were included in this study. Based on machine learning algorithms, eight key ARGs (ATG4C, BAX, BIRC5, ERBB2, FKBP1B, HIF1A, NCKAP1, and NFKB1) were integrated to establish ARG classifier. The model exhibited excellent diagnostic values (AUC > 0.85) in multiple datasets and multiple points in time and superiorly distinguished sepsis from other critical illnesses. ARG classifier showed significant correlations with clinical characteristics or endotypes and performed better in predicting mortality (AUC = 0.70) than other clinical characteristics. Additionally, the identified hub ARGs were significantly associated with immune cell infiltration (B, T, NK, dendritic, T regulatory, and myeloid-derived suppressor cells), immune and molecular pathways (inflammation-promoting pathways, HLA, cytolytic activity, apoptosis, type-II IFN response, complement and coagulation cascades), levels of several cytokines (PDGFRB, IL-10, IFNG, and TNF), which indicated that ARG classifier/hub ARGs adequately reflected the immune microenvironment during sepsis. Finally, using clinical specimens, the expression levels of key ARGs in patients with sepsis were found to differ significantly from those of control patients, and ARG classifier exhibited superior diagnostic performance, compared to procalcitonin and C-reactive protein. Collectively, a diagnostic and prognostic model (ARG classifier) based on eight ARGs was developed which may assist clinicians in diagnosis of sepsis and recognizing patient at high risk to guide personalized treatment. Additionally, the ARG classifier effectively reflected the immune microenvironment diversity of sepsis and may facilitate personalized counseling for specific therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
zz发布了新的文献求助30
1秒前
时间丶发布了新的文献求助10
1秒前
柏风华发布了新的文献求助10
1秒前
2秒前
大力沛萍发布了新的文献求助10
2秒前
2秒前
福星高高挂完成签到 ,获得积分10
2秒前
十一发布了新的文献求助10
2秒前
Lg完成签到,获得积分10
3秒前
小k关注了科研通微信公众号
3秒前
3秒前
3秒前
科目三应助小巧的昊强采纳,获得10
4秒前
LC完成签到,获得积分10
4秒前
xyc_liang发布了新的文献求助10
4秒前
4秒前
小蘑菇应助绿狗玩偶采纳,获得10
4秒前
刘珍荣发布了新的文献求助10
4秒前
kirren完成签到,获得积分10
4秒前
Akim应助石冠山采纳,获得10
4秒前
5秒前
摆烂蛋挞完成签到,获得积分20
5秒前
王光宇发布了新的文献求助10
5秒前
FashionBoy应助傻傻的寻琴采纳,获得10
6秒前
zhaokkkk完成签到,获得积分10
6秒前
6秒前
小蘑菇应助阳阳采纳,获得10
6秒前
斯文败类应助派派采纳,获得10
6秒前
着急的罡完成签到,获得积分10
6秒前
刘刘给刘刘的求助进行了留言
6秒前
上官若男应助天行健采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
英俊的铭应助童书兰采纳,获得10
7秒前
Liiii完成签到,获得积分10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410