Construction of Autophagy-Related Gene Classifier for Early Diagnosis, Prognosis and Predicting Immune Microenvironment Features in Sepsis by Machine Learning Algorithms

免疫系统 生物 分类器(UML) 败血症 自噬 计算生物学 机器学习 获得性免疫系统 支持向量机 人工智能 免疫学 生物信息学 计算机科学 遗传学 细胞凋亡
作者
Zhen Chen,Liming Zeng,Genglong Liu,Yangpeng Ou,Chuangang Lu,Ben Yang,Liuer Zuo
出处
期刊:Journal of Inflammation Research [Dove Medical Press]
卷期号:Volume 15: 6165-6186 被引量:3
标识
DOI:10.2147/jir.s386714
摘要

The immune system plays a fundamental role in the pathophysiology of sepsis, and autophagy and autophagy-related molecules are crucial in innate and adaptive immune responses; however, the potential roles of autophagy-related genes (ARGs) in sepsis are not comprehensively understood.A systematic search was conducted in ArrayExpress and Gene Expression Omnibus (GEO) cohorts from July 2005 to May 2022. Machine learning approaches, including modified Lasso penalized regression, support vector machine, and artificial neural network, were applied to identify hub ARGs, thereby developing a prediction model termed ARG classifier. Diagnostic and prognostic performance of the model was comprehensively analyzed using multi-transcriptome data. Subsequently, we systematically correlated the ARG classifier/hub ARGs with immunological characteristics of multiple aspects, including immune cell infiltration, immune and molecular pathways, cytokine levels, and immune-related genes. Further, we collected clinical specimens to preliminarily investigate ARG expression levels and to assess the diagnostic performance of ARG classifier.A total of ten GEO and three ArrayExpress datasets were included in this study. Based on machine learning algorithms, eight key ARGs (ATG4C, BAX, BIRC5, ERBB2, FKBP1B, HIF1A, NCKAP1, and NFKB1) were integrated to establish ARG classifier. The model exhibited excellent diagnostic values (AUC > 0.85) in multiple datasets and multiple points in time and superiorly distinguished sepsis from other critical illnesses. ARG classifier showed significant correlations with clinical characteristics or endotypes and performed better in predicting mortality (AUC = 0.70) than other clinical characteristics. Additionally, the identified hub ARGs were significantly associated with immune cell infiltration (B, T, NK, dendritic, T regulatory, and myeloid-derived suppressor cells), immune and molecular pathways (inflammation-promoting pathways, HLA, cytolytic activity, apoptosis, type-II IFN response, complement and coagulation cascades), levels of several cytokines (PDGFRB, IL-10, IFNG, and TNF), which indicated that ARG classifier/hub ARGs adequately reflected the immune microenvironment during sepsis. Finally, using clinical specimens, the expression levels of key ARGs in patients with sepsis were found to differ significantly from those of control patients, and ARG classifier exhibited superior diagnostic performance, compared to procalcitonin and C-reactive protein.Collectively, a diagnostic and prognostic model (ARG classifier) based on eight ARGs was developed which may assist clinicians in diagnosis of sepsis and recognizing patient at high risk to guide personalized treatment. Additionally, the ARG classifier effectively reflected the immune microenvironment diversity of sepsis and may facilitate personalized counseling for specific therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小姜完成签到,获得积分10
1秒前
sophia完成签到 ,获得积分10
4秒前
Qiao完成签到 ,获得积分10
6秒前
酷波er应助sylnd126采纳,获得10
8秒前
Akim应助忍冬采纳,获得10
9秒前
lww123完成签到,获得积分10
9秒前
欣喜的薯片完成签到 ,获得积分10
11秒前
zcg完成签到,获得积分10
12秒前
Xiao10105830完成签到,获得积分10
14秒前
qks完成签到 ,获得积分10
14秒前
缓慢冥幽完成签到 ,获得积分10
14秒前
战场原荡漾完成签到,获得积分10
20秒前
HXL完成签到 ,获得积分10
26秒前
坚强的元瑶完成签到,获得积分10
29秒前
CLTTTt完成签到,获得积分10
38秒前
GuangboXia完成签到,获得积分10
40秒前
所所应助行云流水采纳,获得20
42秒前
生言生语完成签到,获得积分10
44秒前
zjq完成签到 ,获得积分10
44秒前
Hosea完成签到 ,获得积分10
44秒前
Jasmineyfz完成签到 ,获得积分10
47秒前
研友_ZegMrL完成签到,获得积分10
49秒前
fengfenghao完成签到 ,获得积分10
50秒前
猪仔5号完成签到 ,获得积分10
50秒前
52秒前
沙与沫完成签到 ,获得积分10
55秒前
haonanchen完成签到,获得积分10
59秒前
飞快的冰淇淋完成签到 ,获得积分10
1分钟前
兴奋元灵完成签到 ,获得积分10
1分钟前
李东东完成签到 ,获得积分10
1分钟前
为你等候完成签到,获得积分10
1分钟前
Zheng完成签到 ,获得积分10
1分钟前
楚寅完成签到 ,获得积分10
1分钟前
野草完成签到,获得积分10
1分钟前
优雅的千雁完成签到,获得积分10
1分钟前
tsuki完成签到 ,获得积分10
1分钟前
丽丽完成签到 ,获得积分10
1分钟前
嘻哈学习完成签到,获得积分10
1分钟前
小九完成签到,获得积分10
1分钟前
lily完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155031
求助须知:如何正确求助?哪些是违规求助? 2805746
关于积分的说明 7865951
捐赠科研通 2464038
什么是DOI,文献DOI怎么找? 1311698
科研通“疑难数据库(出版商)”最低求助积分说明 629734
版权声明 601862