Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction

等级制度 层级组织 化学 灵活性(工程) 纳米技术 控制重构 功能(生物学) 计算机科学 生化工程 工程类 材料科学 生物 数学 统计 管理 进化生物学 经济 市场经济 嵌入式系统
作者
Li Shao,Jinrong Ma,Jesse L. Prelesnik,Yicheng Zhou,Mary Nguyen,Mingfei Zhao,Samson A. Jenekhe,Sergei V. Kalinin,Andrew L. Ferguson,Jim Pfaendtner,Christopher J. Mundy,James J. De Yoreo,François Baneyx,Chun‐Long Chen
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:122 (24): 17397-17478 被引量:48
标识
DOI:10.1021/acs.chemrev.2c00220
摘要

Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
微笑的冥幽完成签到,获得积分10
3秒前
xi完成签到,获得积分10
3秒前
4秒前
情怀应助阿秋采纳,获得10
4秒前
天真苑睐完成签到,获得积分10
5秒前
Jasper应助zeng采纳,获得10
5秒前
大胆砖头完成签到,获得积分10
6秒前
jergen发布了新的文献求助10
7秒前
李昕123发布了新的文献求助10
7秒前
cc发布了新的文献求助10
7秒前
无花果应助冯乌采纳,获得10
7秒前
NexusExplorer应助YiWei采纳,获得10
8秒前
8秒前
8秒前
SciGPT应助Bi8bo采纳,获得10
8秒前
cyy完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
搞怪如豹完成签到,获得积分10
12秒前
科研通AI6应助JTB采纳,获得10
12秒前
12秒前
12秒前
酷酷依秋发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
碧蓝柠檬完成签到,获得积分10
13秒前
bbd发布了新的文献求助10
13秒前
CodeCraft应助乔哥儿采纳,获得10
14秒前
qq发布了新的文献求助10
14秒前
涛123完成签到 ,获得积分10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508004
求助须知:如何正确求助?哪些是违规求助? 4603457
关于积分的说明 14485563
捐赠科研通 4537487
什么是DOI,文献DOI怎么找? 2486678
邀请新用户注册赠送积分活动 1469203
关于科研通互助平台的介绍 1441570