Comparison of NIR and Raman spectra combined with chemometrics for the classification and quantification of mung beans (Vigna radiata L.) of different origins

偏最小二乘回归 化学计量学 拉曼光谱 辐射 分析化学(期刊) 化学 线性判别分析 维格纳 最小二乘函数近似 二阶导数 近红外光谱 数学 生物系统 统计 色谱法 物理 光学 植物 生物 数学分析 估计员
作者
Mulan Wu,Yuhao Li,Yi Yuan,Si Li,Xiaoxiao Song,Junyi Yin
出处
期刊:Food Control [Elsevier]
卷期号:145: 109498-109498 被引量:33
标识
DOI:10.1016/j.foodcont.2022.109498
摘要

In this study, we compared two technologies (i.e. Near-infrared and Raman spectroscopy) for origin identification and quantitative research on nutritional components of mung beans based on the chemometric principles. The orthogonal partial least squares discriminant analysis models with Near-infrared as well as Raman spectroscopy had a predictive ability to 94.3% and 92.9%, respectively, indicating that differentiation of mung beans from different origin sources could be achieved by both Near-infrared and Raman spectroscopy. Quantitative models for moisture, protein and total starch were performed using partial least squares regression techniques based on different spectral pre-processing methods. Overall, the partial least squares quantitative regression model built with Near-infrared showed better performance than that of Raman spectroscopy. The partial least squares regression model obtained by multiplicative scatter correction combined with first derivative treatment of Near-infrared spectral data showed excellent predictive ability (Rc = 99.9%, Rp = 85.3%) for moisture. The quantitative protein prediction model built by multiplicative scatter correction treatment of Near-infrared also performed well (Rc = 91.4%, Rp = 91.5%). In addition, we also characterized potential differential compounds in mung beans of different origins by UPLC-Q-TOF-MS. This study provides a theoretical basis for the traceability of legume products and the construction of multiple rapid detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cassie发布了新的文献求助10
1秒前
2秒前
赵lp.发布了新的文献求助10
2秒前
skyy完成签到,获得积分10
2秒前
2秒前
科目三应助霸气问萍采纳,获得10
3秒前
沨祈发布了新的文献求助10
3秒前
苍鹭发布了新的文献求助30
4秒前
十有五完成签到,获得积分10
4秒前
bkagyin应助Zhao采纳,获得10
4秒前
默默的青旋完成签到,获得积分10
4秒前
5秒前
Cody发布了新的文献求助10
6秒前
zhang568完成签到 ,获得积分10
6秒前
柒柒发布了新的文献求助20
6秒前
shenrenye发布了新的文献求助10
6秒前
DDU发布了新的文献求助10
7秒前
LiTianHao完成签到,获得积分10
7秒前
Akim应助pai采纳,获得10
8秒前
思源应助无情向梦采纳,获得10
8秒前
李小强完成签到,获得积分10
8秒前
fkhuny完成签到,获得积分10
8秒前
OneOne发布了新的文献求助10
8秒前
王kk发布了新的文献求助10
8秒前
lilili应助blossom采纳,获得10
10秒前
szj完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
打打应助他方世界采纳,获得10
11秒前
冷傲的xu发布了新的文献求助20
12秒前
乌龟发布了新的文献求助10
13秒前
无花果应助Cody采纳,获得10
13秒前
14秒前
14秒前
小蘑菇应助DDU采纳,获得10
14秒前
zzz完成签到,获得积分10
15秒前
星辰大海应助申燕婷采纳,获得10
15秒前
15秒前
自信安荷完成签到,获得积分10
16秒前
16秒前
传奇3应助Antonio采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489969
求助须知:如何正确求助?哪些是违规求助? 4588744
关于积分的说明 14420741
捐赠科研通 4520420
什么是DOI,文献DOI怎么找? 2476681
邀请新用户注册赠送积分活动 1462196
关于科研通互助平台的介绍 1435085