Comparison of NIR and Raman spectra combined with chemometrics for the classification and quantification of mung beans (Vigna radiata L.) of different origins

偏最小二乘回归 化学计量学 拉曼光谱 辐射 分析化学(期刊) 化学 线性判别分析 维格纳 最小二乘函数近似 二阶导数 近红外光谱 数学 生物系统 统计 色谱法 物理 光学 植物 生物 数学分析 估计员
作者
Mulan Wu,Yuhao Li,Yi Yuan,Si Li,Xiaoxiao Song,Junyi Yin
出处
期刊:Food Control [Elsevier]
卷期号:145: 109498-109498 被引量:33
标识
DOI:10.1016/j.foodcont.2022.109498
摘要

In this study, we compared two technologies (i.e. Near-infrared and Raman spectroscopy) for origin identification and quantitative research on nutritional components of mung beans based on the chemometric principles. The orthogonal partial least squares discriminant analysis models with Near-infrared as well as Raman spectroscopy had a predictive ability to 94.3% and 92.9%, respectively, indicating that differentiation of mung beans from different origin sources could be achieved by both Near-infrared and Raman spectroscopy. Quantitative models for moisture, protein and total starch were performed using partial least squares regression techniques based on different spectral pre-processing methods. Overall, the partial least squares quantitative regression model built with Near-infrared showed better performance than that of Raman spectroscopy. The partial least squares regression model obtained by multiplicative scatter correction combined with first derivative treatment of Near-infrared spectral data showed excellent predictive ability (Rc = 99.9%, Rp = 85.3%) for moisture. The quantitative protein prediction model built by multiplicative scatter correction treatment of Near-infrared also performed well (Rc = 91.4%, Rp = 91.5%). In addition, we also characterized potential differential compounds in mung beans of different origins by UPLC-Q-TOF-MS. This study provides a theoretical basis for the traceability of legume products and the construction of multiple rapid detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
JamesPei应助shareef采纳,获得10
1秒前
2秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
10秒前
10秒前
晨曦发布了新的文献求助10
10秒前
13秒前
领导范儿应助Skywalker采纳,获得10
16秒前
科研通AI6应助亲爱的Y小姐采纳,获得20
16秒前
陈王发布了新的文献求助10
17秒前
秀丽的犀牛完成签到 ,获得积分10
18秒前
天天快乐应助ayayaya采纳,获得10
19秒前
22秒前
bluebell完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
岚天完成签到,获得积分10
24秒前
26秒前
26秒前
六便士完成签到,获得积分10
27秒前
天天快乐应助zink采纳,获得10
29秒前
30秒前
31秒前
32秒前
yumiao发布了新的文献求助10
32秒前
Weathing完成签到 ,获得积分10
33秒前
34秒前
Skywalker发布了新的文献求助10
34秒前
34秒前
35秒前
小杰发布了新的文献求助100
36秒前
潇洒的绿真完成签到 ,获得积分10
36秒前
38秒前
Boffican发布了新的文献求助10
38秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449198
求助须知:如何正确求助?哪些是违规求助? 4557419
关于积分的说明 14263155
捐赠科研通 4480370
什么是DOI,文献DOI怎么找? 2454462
邀请新用户注册赠送积分活动 1445133
关于科研通互助平台的介绍 1420965