Comparison of NIR and Raman spectra combined with chemometrics for the classification and quantification of mung beans (Vigna radiata L.) of different origins

偏最小二乘回归 化学计量学 拉曼光谱 辐射 分析化学(期刊) 化学 线性判别分析 维格纳 最小二乘函数近似 二阶导数 近红外光谱 数学 生物系统 统计 色谱法 物理 光学 植物 生物 数学分析 估计员
作者
Mulan Wu,Yuhao Li,Yi Yuan,Si Li,Xiaoxiao Song,Junyi Yin
出处
期刊:Food Control [Elsevier]
卷期号:145: 109498-109498 被引量:33
标识
DOI:10.1016/j.foodcont.2022.109498
摘要

In this study, we compared two technologies (i.e. Near-infrared and Raman spectroscopy) for origin identification and quantitative research on nutritional components of mung beans based on the chemometric principles. The orthogonal partial least squares discriminant analysis models with Near-infrared as well as Raman spectroscopy had a predictive ability to 94.3% and 92.9%, respectively, indicating that differentiation of mung beans from different origin sources could be achieved by both Near-infrared and Raman spectroscopy. Quantitative models for moisture, protein and total starch were performed using partial least squares regression techniques based on different spectral pre-processing methods. Overall, the partial least squares quantitative regression model built with Near-infrared showed better performance than that of Raman spectroscopy. The partial least squares regression model obtained by multiplicative scatter correction combined with first derivative treatment of Near-infrared spectral data showed excellent predictive ability (Rc = 99.9%, Rp = 85.3%) for moisture. The quantitative protein prediction model built by multiplicative scatter correction treatment of Near-infrared also performed well (Rc = 91.4%, Rp = 91.5%). In addition, we also characterized potential differential compounds in mung beans of different origins by UPLC-Q-TOF-MS. This study provides a theoretical basis for the traceability of legume products and the construction of multiple rapid detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXZ完成签到,获得积分10
刚刚
四糸乃完成签到,获得积分10
1秒前
冷艳蛋挞完成签到,获得积分10
1秒前
闪闪的熠彤完成签到,获得积分10
2秒前
2秒前
2秒前
天天快乐应助俭朴的雨安采纳,获得10
2秒前
3秒前
3秒前
臭蚊子你个饿死鬼完成签到 ,获得积分10
3秒前
4秒前
风再起时完成签到,获得积分10
6秒前
科研通AI6应助www采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
6秒前
6秒前
jinger发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
明亮发布了新的文献求助10
7秒前
王迪发布了新的文献求助10
7秒前
LIU发布了新的文献求助10
8秒前
MR_Z驳回了H-C应助
8秒前
麟书夷发布了新的文献求助10
9秒前
comri发布了新的文献求助10
9秒前
10秒前
领导范儿应助乐芙采纳,获得30
10秒前
刘佳发布了新的文献求助10
10秒前
12秒前
一一应助wise111采纳,获得20
13秒前
共享精神应助葳蕤采纳,获得10
13秒前
Hello应助loogn7采纳,获得10
13秒前
FashionBoy应助123采纳,获得10
14秒前
15秒前
15秒前
15秒前
话语完成签到,获得积分10
16秒前
CodeCraft应助kinlin采纳,获得10
16秒前
奋斗VS发布了新的文献求助10
17秒前
青檀完成签到,获得积分10
17秒前
南瓜灯Lample完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648325
求助须知:如何正确求助?哪些是违规求助? 4775345
关于积分的说明 15043906
捐赠科研通 4807336
什么是DOI,文献DOI怎么找? 2570747
邀请新用户注册赠送积分活动 1527484
关于科研通互助平台的介绍 1486437