Comparison of NIR and Raman spectra combined with chemometrics for the classification and quantification of mung beans (Vigna radiata L.) of different origins

偏最小二乘回归 化学计量学 拉曼光谱 辐射 分析化学(期刊) 化学 线性判别分析 维格纳 最小二乘函数近似 二阶导数 近红外光谱 数学 生物系统 统计 色谱法 物理 光学 植物 生物 数学分析 估计员
作者
Mulan Wu,Yuhao Li,Yi Yuan,Si Li,Xiaoxiao Song,Junyi Yin
出处
期刊:Food Control [Elsevier]
卷期号:145: 109498-109498 被引量:33
标识
DOI:10.1016/j.foodcont.2022.109498
摘要

In this study, we compared two technologies (i.e. Near-infrared and Raman spectroscopy) for origin identification and quantitative research on nutritional components of mung beans based on the chemometric principles. The orthogonal partial least squares discriminant analysis models with Near-infrared as well as Raman spectroscopy had a predictive ability to 94.3% and 92.9%, respectively, indicating that differentiation of mung beans from different origin sources could be achieved by both Near-infrared and Raman spectroscopy. Quantitative models for moisture, protein and total starch were performed using partial least squares regression techniques based on different spectral pre-processing methods. Overall, the partial least squares quantitative regression model built with Near-infrared showed better performance than that of Raman spectroscopy. The partial least squares regression model obtained by multiplicative scatter correction combined with first derivative treatment of Near-infrared spectral data showed excellent predictive ability (Rc = 99.9%, Rp = 85.3%) for moisture. The quantitative protein prediction model built by multiplicative scatter correction treatment of Near-infrared also performed well (Rc = 91.4%, Rp = 91.5%). In addition, we also characterized potential differential compounds in mung beans of different origins by UPLC-Q-TOF-MS. This study provides a theoretical basis for the traceability of legume products and the construction of multiple rapid detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
hudaojiadecaigou完成签到,获得积分10
1秒前
愉快的莹发布了新的文献求助10
1秒前
1秒前
jinger发布了新的文献求助10
1秒前
2秒前
清风完成签到,获得积分10
2秒前
脑洞疼应助EASA采纳,获得10
3秒前
小二郎应助Hi采纳,获得10
3秒前
li完成签到,获得积分10
3秒前
蓝海完成签到,获得积分10
3秒前
科研的光发布了新的文献求助10
4秒前
4秒前
mimi发布了新的文献求助10
4秒前
4秒前
汉堡包应助慧子采纳,获得30
4秒前
领导范儿应助激动的元正采纳,获得10
5秒前
ypg666666完成签到,获得积分10
5秒前
5秒前
Jasper应助Dreamhappy采纳,获得10
5秒前
小石头完成签到,获得积分10
6秒前
Maple发布了新的文献求助10
6秒前
斯文败类应助明理觅风采纳,获得10
6秒前
6秒前
li应助缥缈的茗采纳,获得20
6秒前
不忘初心完成签到 ,获得积分10
6秒前
orixero应助YL采纳,获得10
6秒前
小新同学发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
胡导家的菜狗完成签到 ,获得积分10
7秒前
7秒前
中药中医科研狗1123完成签到,获得积分10
7秒前
JamesPei应助Yapi采纳,获得10
7秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
武巧运完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785