Comparison of NIR and Raman spectra combined with chemometrics for the classification and quantification of mung beans (Vigna radiata L.) of different origins

偏最小二乘回归 化学计量学 拉曼光谱 辐射 分析化学(期刊) 化学 线性判别分析 维格纳 最小二乘函数近似 二阶导数 近红外光谱 数学 生物系统 统计 色谱法 物理 光学 植物 生物 数学分析 估计员
作者
Mulan Wu,Yuhao Li,Yi Yuan,Si Li,Xiaoxiao Song,Junyi Yin
出处
期刊:Food Control [Elsevier]
卷期号:145: 109498-109498 被引量:33
标识
DOI:10.1016/j.foodcont.2022.109498
摘要

In this study, we compared two technologies (i.e. Near-infrared and Raman spectroscopy) for origin identification and quantitative research on nutritional components of mung beans based on the chemometric principles. The orthogonal partial least squares discriminant analysis models with Near-infrared as well as Raman spectroscopy had a predictive ability to 94.3% and 92.9%, respectively, indicating that differentiation of mung beans from different origin sources could be achieved by both Near-infrared and Raman spectroscopy. Quantitative models for moisture, protein and total starch were performed using partial least squares regression techniques based on different spectral pre-processing methods. Overall, the partial least squares quantitative regression model built with Near-infrared showed better performance than that of Raman spectroscopy. The partial least squares regression model obtained by multiplicative scatter correction combined with first derivative treatment of Near-infrared spectral data showed excellent predictive ability (Rc = 99.9%, Rp = 85.3%) for moisture. The quantitative protein prediction model built by multiplicative scatter correction treatment of Near-infrared also performed well (Rc = 91.4%, Rp = 91.5%). In addition, we also characterized potential differential compounds in mung beans of different origins by UPLC-Q-TOF-MS. This study provides a theoretical basis for the traceability of legume products and the construction of multiple rapid detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小恐龙完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
4秒前
4秒前
小郭发布了新的文献求助10
5秒前
传奇3应助体贴香岚采纳,获得10
5秒前
runner完成签到,获得积分10
5秒前
超级幻梅发布了新的文献求助10
6秒前
Battery应助文件撤销了驳回
6秒前
非要起名发布了新的文献求助20
6秒前
章鱼哥发布了新的文献求助10
8秒前
nn完成签到,获得积分10
9秒前
9秒前
华仔应助沐沐溪三清采纳,获得10
9秒前
清风明月应助runner采纳,获得10
10秒前
11秒前
11秒前
12秒前
Hello应助小郭采纳,获得10
12秒前
ahsizowb完成签到,获得积分10
13秒前
风趣蜡烛发布了新的文献求助40
15秒前
几星霜完成签到,获得积分10
17秒前
皮蛋完成签到,获得积分10
17秒前
超帅远望完成签到,获得积分10
18秒前
18秒前
shaoshao86完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
20秒前
Hello应助厉害tt采纳,获得10
20秒前
21秒前
22秒前
慢慢发布了新的文献求助10
23秒前
dede发布了新的文献求助20
23秒前
23秒前
24秒前
11发布了新的文献求助30
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287819
求助须知:如何正确求助?哪些是违规求助? 4439834
关于积分的说明 13823167
捐赠科研通 4322057
什么是DOI,文献DOI怎么找? 2372274
邀请新用户注册赠送积分活动 1367845
关于科研通互助平台的介绍 1331344