MTAD RF: Multivariate Time-series Anomaly Detection based on Reconstruction and Forecast

异常检测 多元统计 计算机科学 杠杆(统计) 系列(地层学) 异常(物理) 假阳性悖论 时间序列 数据挖掘 特征(语言学) 人工智能 模式识别(心理学) 单变量 机器学习 地质学 古生物学 凝聚态物理 语言学 哲学 物理
作者
Kenan Qin,Mengfan Xu,Bello Ahmad Muhammad,Jing Han
出处
期刊:Journal of networking and network applications [Institute of Electronics and Computer]
卷期号:3 (2) 被引量:1
标识
DOI:10.33969/j-nana.2023.030105
摘要

Anomaly detection in multivariate time series is an important research direction, which helps to improve the security of industrial systems by detecting abnormally unreliable devices. Multivariate time series (MTS) anomalies not only need to pay attention to the time correlation between different time series but also need to consider the abnormal changes in the relationship between different variables. Once the influence relationship between two variables that influence each other is ignored, it will likely lead to false positives or false positives. At the same time, the degree of influence between different time series or different features is also inconsistent, just like what happened recently have radically different influences on the present. Furthermore, most of the existing models are weak in detecting no abnormality. To tackle these issues, in this paper, we propose a new model of multivariate time series anomaly detection based on reconstruction and forecast, named MTAD RF. First, we capture the temporal and feature correlations of MTS through two parallel GAT layers, and at the same time distinguish the influence degree between different time series or different features based on attention coefficients. Second, we leverage the generative power of VAE and the single-step forecast power of MLP to jointly detect known and unknown anomalies based on reconstructed and predicted models. Major practical implications of the proposed approach is missing. Finally, anomalies are detected and explained based on temporal and feature anomaly scores. Experiments demonstrate that our model outperforms current state-of-the-art methods on 4 real-world datasets, with an average F1 score of about 95% and excellent anomaly diagnostic ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
复杂翠彤完成签到,获得积分10
刚刚
一一应助科研通管家采纳,获得10
刚刚
甜蜜晓绿完成签到,获得积分10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得30
1秒前
科目三应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得30
1秒前
科目三应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
DawudShan发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728831
求助须知:如何正确求助?哪些是违规求助? 5314940
关于积分的说明 15315299
捐赠科研通 4875926
什么是DOI,文献DOI怎么找? 2619096
邀请新用户注册赠送积分活动 1568732
关于科研通互助平台的介绍 1525223