已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MTAD RF: Multivariate Time-series Anomaly Detection based on Reconstruction and Forecast

异常检测 多元统计 计算机科学 杠杆(统计) 系列(地层学) 异常(物理) 假阳性悖论 时间序列 数据挖掘 特征(语言学) 人工智能 模式识别(心理学) 单变量 机器学习 地质学 古生物学 凝聚态物理 语言学 哲学 物理
作者
Kenan Qin,Mengfan Xu,Bello Ahmad Muhammad,Jing Han
出处
期刊:Journal of networking and network applications [Institute of Electronics and Computer]
卷期号:3 (2) 被引量:1
标识
DOI:10.33969/j-nana.2023.030105
摘要

Anomaly detection in multivariate time series is an important research direction, which helps to improve the security of industrial systems by detecting abnormally unreliable devices. Multivariate time series (MTS) anomalies not only need to pay attention to the time correlation between different time series but also need to consider the abnormal changes in the relationship between different variables. Once the influence relationship between two variables that influence each other is ignored, it will likely lead to false positives or false positives. At the same time, the degree of influence between different time series or different features is also inconsistent, just like what happened recently have radically different influences on the present. Furthermore, most of the existing models are weak in detecting no abnormality. To tackle these issues, in this paper, we propose a new model of multivariate time series anomaly detection based on reconstruction and forecast, named MTAD RF. First, we capture the temporal and feature correlations of MTS through two parallel GAT layers, and at the same time distinguish the influence degree between different time series or different features based on attention coefficients. Second, we leverage the generative power of VAE and the single-step forecast power of MLP to jointly detect known and unknown anomalies based on reconstructed and predicted models. Major practical implications of the proposed approach is missing. Finally, anomalies are detected and explained based on temporal and feature anomaly scores. Experiments demonstrate that our model outperforms current state-of-the-art methods on 4 real-world datasets, with an average F1 score of about 95% and excellent anomaly diagnostic ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助杨亚轩采纳,获得10
1秒前
寇博翔发布了新的文献求助30
2秒前
传奇3应助益生菌小哥采纳,获得10
2秒前
积极松完成签到 ,获得积分10
3秒前
3秒前
5秒前
xinxin完成签到,获得积分10
7秒前
icecream完成签到,获得积分10
8秒前
8秒前
vicky完成签到,获得积分10
9秒前
mark707发布了新的文献求助50
9秒前
赘婿应助寇博翔采纳,获得10
10秒前
图图医关注了科研通微信公众号
14秒前
hhh完成签到 ,获得积分10
15秒前
17秒前
18秒前
6昂完成签到 ,获得积分10
20秒前
HMX发布了新的文献求助10
25秒前
图图医发布了新的文献求助10
26秒前
26秒前
27秒前
香蕉觅云应助玛卡巴卡采纳,获得10
28秒前
无心客应助玛卡巴卡采纳,获得10
28秒前
情怀应助玛卡巴卡采纳,获得10
28秒前
无心客应助玛卡巴卡采纳,获得10
28秒前
今后应助玛卡巴卡采纳,获得10
28秒前
无心客应助玛卡巴卡采纳,获得10
28秒前
Akim应助玛卡巴卡采纳,获得10
28秒前
酷波er应助玛卡巴卡采纳,获得10
29秒前
思源应助玛卡巴卡采纳,获得10
29秒前
充电宝应助玛卡巴卡采纳,获得10
29秒前
29秒前
健壮的思远完成签到,获得积分10
30秒前
天元神尊完成签到 ,获得积分10
30秒前
充电宝应助ddd采纳,获得10
31秒前
Alimove完成签到,获得积分10
31秒前
31秒前
WU发布了新的文献求助10
33秒前
深情安青应助四月采纳,获得10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434