已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MTAD RF: Multivariate Time-series Anomaly Detection based on Reconstruction and Forecast

异常检测 多元统计 计算机科学 杠杆(统计) 系列(地层学) 异常(物理) 假阳性悖论 时间序列 数据挖掘 特征(语言学) 人工智能 模式识别(心理学) 单变量 机器学习 地质学 古生物学 凝聚态物理 语言学 哲学 物理
作者
Kenan Qin,Mengfan Xu,Bello Ahmad Muhammad,Jing Han
出处
期刊:Journal of networking and network applications [Institute of Electronics and Computer]
卷期号:3 (2) 被引量:1
标识
DOI:10.33969/j-nana.2023.030105
摘要

Anomaly detection in multivariate time series is an important research direction, which helps to improve the security of industrial systems by detecting abnormally unreliable devices. Multivariate time series (MTS) anomalies not only need to pay attention to the time correlation between different time series but also need to consider the abnormal changes in the relationship between different variables. Once the influence relationship between two variables that influence each other is ignored, it will likely lead to false positives or false positives. At the same time, the degree of influence between different time series or different features is also inconsistent, just like what happened recently have radically different influences on the present. Furthermore, most of the existing models are weak in detecting no abnormality. To tackle these issues, in this paper, we propose a new model of multivariate time series anomaly detection based on reconstruction and forecast, named MTAD RF. First, we capture the temporal and feature correlations of MTS through two parallel GAT layers, and at the same time distinguish the influence degree between different time series or different features based on attention coefficients. Second, we leverage the generative power of VAE and the single-step forecast power of MLP to jointly detect known and unknown anomalies based on reconstructed and predicted models. Major practical implications of the proposed approach is missing. Finally, anomalies are detected and explained based on temporal and feature anomaly scores. Experiments demonstrate that our model outperforms current state-of-the-art methods on 4 real-world datasets, with an average F1 score of about 95% and excellent anomaly diagnostic ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
星辰大海应助lizeyu采纳,获得10
3秒前
喜欢发布了新的文献求助10
3秒前
周凡淇发布了新的文献求助10
5秒前
7秒前
北冥鱼完成签到,获得积分10
11秒前
烟花应助黄橙子采纳,获得10
12秒前
13秒前
沐阳发布了新的文献求助10
13秒前
15秒前
15秒前
小林完成签到,获得积分20
16秒前
lizeyu发布了新的文献求助10
19秒前
19秒前
可爱的函函应助命运采纳,获得20
19秒前
喜悦的凉面完成签到,获得积分10
22秒前
22秒前
22秒前
25秒前
学术废物完成签到 ,获得积分10
25秒前
26秒前
26秒前
27秒前
周凡淇发布了新的文献求助10
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
pgjwl应助科研通管家采纳,获得10
28秒前
慕青应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
黄橙子发布了新的文献求助10
28秒前
29秒前
研友_VZG7GZ应助YUE采纳,获得10
31秒前
33秒前
wanci应助轻微采纳,获得10
35秒前
巫元菱发布了新的文献求助10
36秒前
36秒前
在水一方应助燊yy采纳,获得10
37秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125744
求助须知:如何正确求助?哪些是违规求助? 2776037
关于积分的说明 7728973
捐赠科研通 2431507
什么是DOI,文献DOI怎么找? 1292095
科研通“疑难数据库(出版商)”最低求助积分说明 622375
版权声明 600380