MTAD RF: Multivariate Time-series Anomaly Detection based on Reconstruction and Forecast

异常检测 多元统计 计算机科学 杠杆(统计) 系列(地层学) 异常(物理) 假阳性悖论 时间序列 数据挖掘 特征(语言学) 人工智能 模式识别(心理学) 单变量 机器学习 地质学 古生物学 凝聚态物理 语言学 哲学 物理
作者
Kenan Qin,Mengfan Xu,Bello Ahmad Muhammad,Jing Han
出处
期刊:Journal of networking and network applications [Institute of Electronics and Computer]
卷期号:3 (2) 被引量:1
标识
DOI:10.33969/j-nana.2023.030105
摘要

Anomaly detection in multivariate time series is an important research direction, which helps to improve the security of industrial systems by detecting abnormally unreliable devices. Multivariate time series (MTS) anomalies not only need to pay attention to the time correlation between different time series but also need to consider the abnormal changes in the relationship between different variables. Once the influence relationship between two variables that influence each other is ignored, it will likely lead to false positives or false positives. At the same time, the degree of influence between different time series or different features is also inconsistent, just like what happened recently have radically different influences on the present. Furthermore, most of the existing models are weak in detecting no abnormality. To tackle these issues, in this paper, we propose a new model of multivariate time series anomaly detection based on reconstruction and forecast, named MTAD RF. First, we capture the temporal and feature correlations of MTS through two parallel GAT layers, and at the same time distinguish the influence degree between different time series or different features based on attention coefficients. Second, we leverage the generative power of VAE and the single-step forecast power of MLP to jointly detect known and unknown anomalies based on reconstructed and predicted models. Major practical implications of the proposed approach is missing. Finally, anomalies are detected and explained based on temporal and feature anomaly scores. Experiments demonstrate that our model outperforms current state-of-the-art methods on 4 real-world datasets, with an average F1 score of about 95% and excellent anomaly diagnostic ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SGOM完成签到 ,获得积分10
刚刚
程旭发布了新的文献求助10
1秒前
爆米花应助TJ采纳,获得30
2秒前
3秒前
酷波er应助jz采纳,获得10
3秒前
科研通AI2S应助小学猹采纳,获得30
4秒前
共享精神应助Tsuki采纳,获得10
5秒前
5秒前
Crazyhui完成签到,获得积分10
6秒前
8秒前
9秒前
P_Chem完成签到,获得积分10
9秒前
10秒前
雨兔儿完成签到,获得积分10
10秒前
10秒前
PPT发布了新的文献求助100
11秒前
万能图书馆应助程旭采纳,获得10
11秒前
12秒前
DD应助yyanxuemin919采纳,获得10
12秒前
13秒前
翟三日完成签到,获得积分10
14秒前
xyx277发布了新的文献求助10
15秒前
16秒前
甜蜜的阳光完成签到 ,获得积分10
16秒前
好好学习完成签到,获得积分10
16秒前
17秒前
17秒前
蓦然发布了新的文献求助10
17秒前
18秒前
jz发布了新的文献求助10
21秒前
眼睛大的映之完成签到,获得积分20
21秒前
21秒前
闪闪书桃发布了新的文献求助10
23秒前
24秒前
壮观问寒发布了新的文献求助10
24秒前
席涑发布了新的文献求助10
25秒前
酷波er应助hbgsns采纳,获得10
26秒前
领导范儿应助英俊的晟睿采纳,获得10
28秒前
斯文败类应助xyx277采纳,获得10
28秒前
farmeryxt发布了新的文献求助50
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563503
求助须知:如何正确求助?哪些是违规求助? 4648366
关于积分的说明 14684601
捐赠科研通 4590315
什么是DOI,文献DOI怎么找? 2518435
邀请新用户注册赠送积分活动 1491125
关于科研通互助平台的介绍 1462426