清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automated detection and segmentation of pulmonary embolisms on computed tomography pulmonary angiography (CTPA) using deep learning but without manual outlining

Sørensen–骰子系数 肺栓塞 阈值 人工智能 分割 医学 计算机断层血管造影 肺动脉造影 放射科 计算机科学 科恩卡帕 计算机断层摄影术 模式识别(心理学) 图像分割 机器学习 图像(数学) 外科
作者
Jiantao Pu,Naciye Sinem Gezer,Shangsi Ren,Aylin Özgen Alpaydın,Emre Ruhat Avcı,Michael G. Risbano,Belinda Rivera‐Lebron,Stephen Y. Chan,Joseph K. Leader
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:89: 102882-102882 被引量:7
标识
DOI:10.1016/j.media.2023.102882
摘要

We present a novel computer algorithm to automatically detect and segment pulmonary embolisms (PEs) on computed tomography pulmonary angiography (CTPA). This algorithm is based on deep learning but does not require manual outlines of the PE regions. Given a CTPA scan, both intra- and extra-pulmonary arteries were firstly segmented. The arteries were then partitioned into several parts based on size (radius). Adaptive thresholding and constrained morphological operations were used to identify suspicious PE regions within each part. The confidence of a suspicious region to be PE was scored based on its contrast in the arteries. This approach was applied to the publicly available RSNA Pulmonary Embolism CT Dataset (RSNA-PE) to identify three-dimensional (3-D) PE negative and positive image patches, which were used to train a 3-D Recurrent Residual U-Net (R2-Unet) to automatically segment PE. The feasibility of this computer algorithm was validated on an independent test set consisting of 91 CTPA scans acquired from a different medical institute, where the PE regions were manually located and outlined by a thoracic radiologist (>18 years' experience). An R2-Unet model was also trained and validated on the manual outlines using a 5-fold cross-validation method. The CNN model trained on the high-confident PE regions showed a Dice coefficient of 0.676±0.168 and a false positive rate of 1.86 per CT scan, while the CNN model trained on the manual outlines demonstrated a Dice coefficient of 0.647±0.192 and a false positive rate of 4.20 per CT scan. The former model performed significantly better than the latter model (p<0.01). The promising performance of the developed PE detection and segmentation algorithm suggests the feasibility of training a deep learning network without dedicating significant efforts to manual annotations of the PE regions on CTPA scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
5秒前
红茸茸羊完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
34秒前
47秒前
50秒前
50秒前
量子星尘发布了新的文献求助10
50秒前
k sir完成签到,获得积分10
52秒前
54秒前
lotus87发布了新的文献求助10
55秒前
k sir发布了新的文献求助10
56秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
大方的火龙果完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
ww完成签到,获得积分10
1分钟前
lotus87完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
迅速的幻雪完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
laohei94_6完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Cheney完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
huangzsdy完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
可夫司机完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
陈麦子完成签到,获得积分10
3分钟前
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661095
求助须知:如何正确求助?哪些是违规求助? 3222235
关于积分的说明 9744098
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538