亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Study on prediction model of liquid holdup based on back propagation neural network optimized by tuna swarm algorithm

清管 管道运输 压力降 石油工程 人工神经网络 机械 粒子群优化 模拟 数学 材料科学 工程类 算法 计算机科学 物理 机械工程 人工智能
作者
Xiao Rong-ge,Guoqing Liu,Dongrui Yi,Бо Лю,Zhuang Qi
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:45 (3): 8623-8641 被引量:1
标识
DOI:10.1080/15567036.2023.2229269
摘要

It is unavoidable that there will be liquid accumulation in the low-lying areas of the pipelines during the operation of wet gas pipelines. The existence of liquid accumulation can generate a variety of safety issues and, in extreme circumstances, accidents. The accurate calculation of liquid holdup in gas-liquid two-phase flow is of great significance for the study of flow pattern identification, pressure drop calculation, pigging cycle determination, hydrate prediction, wax deposition prediction, pipeline corrosion evaluation and prediction, and transportation efficiency calculation of gas pipelines. Therefore, it is crucial to predict the liquid holdup of wet gas pipelines. 2141 independent experimental data samples were collected and screened out from literatures. Based on the gray theory, gray relation analysis was carried out on the influencing factors of liquid holdup, and the factors with greater influence were selected as the influencing variables; the liquid holdup prediction model based on tuna swarm algorithm optimized BP neural network was established, with pipe diameter, inclination angle, apparent gas velocity, apparent liquid velocity, average temperature, average pressure, and liquid viscosity as input parameters, and liquid holdup as output parameter. Liquid holdup was predicted for upward inclined, downward inclined, and horizontal pipelines respectively. The results show that the prediction model of liquid holdup established in this paper has high accuracy, with the MAPE value of 5.3223%, RMSE value of 0.0213, and R2 value of 0.9924 for upward inclined pipelines; the MAPE value of 10.1859%, RMSE value of 0.0174, and R2 value of 0.9922 for downward inclined pipelines; the MAPE value of 4.8037%, RMSE value of 0.0113, and R2 value of 0.9974 for horizontal pipelines. The predicted results are generally stable and have a wider scope of application, providing a new idea and approach for predicting the liquid holdup of wet gas pipelines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
空咻咻发布了新的文献求助10
10秒前
且听风吟发布了新的文献求助10
11秒前
14秒前
彩色凡英发布了新的文献求助30
15秒前
19秒前
25秒前
且听风吟完成签到,获得积分10
35秒前
36秒前
彩色凡英完成签到,获得积分10
39秒前
FashionBoy应助呜呼采纳,获得10
47秒前
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
打打应助zz采纳,获得10
1分钟前
张家宁发布了新的文献求助10
1分钟前
1分钟前
zz发布了新的文献求助10
1分钟前
2分钟前
李志全完成签到 ,获得积分10
2分钟前
lhn完成签到 ,获得积分10
2分钟前
贼歪歪完成签到,获得积分10
2分钟前
传奇3应助Zhao0112采纳,获得10
2分钟前
2分钟前
eatme完成签到,获得积分10
2分钟前
2分钟前
Zhao0112发布了新的文献求助10
2分钟前
彭于晏应助保持科研热情采纳,获得10
3分钟前
牛八先生完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
traveller应助语言与言语采纳,获得200
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755406
求助须知:如何正确求助?哪些是违规求助? 5494623
关于积分的说明 15381200
捐赠科研通 4893493
什么是DOI,文献DOI怎么找? 2632160
邀请新用户注册赠送积分活动 1579994
关于科研通互助平台的介绍 1535824