已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Study on prediction model of liquid holdup based on back propagation neural network optimized by tuna swarm algorithm

清管 管道运输 压力降 石油工程 人工神经网络 机械 粒子群优化 模拟 数学 材料科学 工程类 算法 计算机科学 物理 机械工程 人工智能
作者
Xiao Rong-ge,Guoqing Liu,Dongrui Yi,Бо Лю,Zhuang Qi
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:45 (3): 8623-8641 被引量:1
标识
DOI:10.1080/15567036.2023.2229269
摘要

It is unavoidable that there will be liquid accumulation in the low-lying areas of the pipelines during the operation of wet gas pipelines. The existence of liquid accumulation can generate a variety of safety issues and, in extreme circumstances, accidents. The accurate calculation of liquid holdup in gas-liquid two-phase flow is of great significance for the study of flow pattern identification, pressure drop calculation, pigging cycle determination, hydrate prediction, wax deposition prediction, pipeline corrosion evaluation and prediction, and transportation efficiency calculation of gas pipelines. Therefore, it is crucial to predict the liquid holdup of wet gas pipelines. 2141 independent experimental data samples were collected and screened out from literatures. Based on the gray theory, gray relation analysis was carried out on the influencing factors of liquid holdup, and the factors with greater influence were selected as the influencing variables; the liquid holdup prediction model based on tuna swarm algorithm optimized BP neural network was established, with pipe diameter, inclination angle, apparent gas velocity, apparent liquid velocity, average temperature, average pressure, and liquid viscosity as input parameters, and liquid holdup as output parameter. Liquid holdup was predicted for upward inclined, downward inclined, and horizontal pipelines respectively. The results show that the prediction model of liquid holdup established in this paper has high accuracy, with the MAPE value of 5.3223%, RMSE value of 0.0213, and R2 value of 0.9924 for upward inclined pipelines; the MAPE value of 10.1859%, RMSE value of 0.0174, and R2 value of 0.9922 for downward inclined pipelines; the MAPE value of 4.8037%, RMSE value of 0.0113, and R2 value of 0.9974 for horizontal pipelines. The predicted results are generally stable and have a wider scope of application, providing a new idea and approach for predicting the liquid holdup of wet gas pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮的曼文完成签到 ,获得积分10
3秒前
善学以致用应助风笛采纳,获得10
4秒前
123开花完成签到 ,获得积分10
6秒前
home完成签到,获得积分10
6秒前
8秒前
诗诗发布了新的文献求助10
10秒前
12秒前
安然发布了新的文献求助10
12秒前
12秒前
小管完成签到,获得积分20
14秒前
14秒前
ZYH关注了科研通微信公众号
15秒前
15秒前
inzaghi完成签到,获得积分10
16秒前
16秒前
小管发布了新的文献求助10
17秒前
ple发布了新的文献求助10
18秒前
风笛发布了新的文献求助10
19秒前
luroa完成签到 ,获得积分10
19秒前
kingwill应助小管采纳,获得30
23秒前
25秒前
27秒前
Akim应助辉hui采纳,获得10
27秒前
ple完成签到,获得积分10
30秒前
搜集达人应助xishanmeng采纳,获得30
30秒前
安然发布了新的文献求助10
30秒前
打打应助冷傲汽车采纳,获得10
33秒前
耶耶耶发布了新的文献求助10
33秒前
菠萝菠萝哒应助ggn采纳,获得30
36秒前
37秒前
MizuAsagi驳回了Ava应助
38秒前
北梦完成签到,获得积分10
39秒前
40秒前
大模型应助活泼学生采纳,获得10
40秒前
闵卷完成签到,获得积分10
42秒前
42秒前
44秒前
安然发布了新的文献求助10
45秒前
杋困了完成签到 ,获得积分10
47秒前
碧蓝幻香完成签到,获得积分10
47秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484112
求助须知:如何正确求助?哪些是违规求助? 3073192
关于积分的说明 9129970
捐赠科研通 2764864
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701057