Improving machine learning force fields for molecular dynamics simulations with fine-grained force metrics

力场(虚构) 分子动力学 计算机科学 稳健性(进化) 理论(学习稳定性) 一般化 集合(抽象数据类型) 机器学习 人工智能 计算化学 化学 数学 数学分析 生物化学 基因 程序设计语言
作者
Zun Wang,Hong-Fei Wu,Lixin Sun,Xinheng He,Zhirong Liu,Bin Shao,Tong Wang,Tie‐Yan Liu
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (3) 被引量:13
标识
DOI:10.1063/5.0147023
摘要

Machine learning force fields (MLFFs) have gained popularity in recent years as they provide a cost-effective alternative to ab initio molecular dynamics (MD) simulations. Despite a small error on the test set, MLFFs inherently suffer from generalization and robustness issues during MD simulations. To alleviate these issues, we propose global force metrics and fine-grained metrics from element and conformation aspects to systematically measure MLFFs for every atom and every conformation of molecules. We selected three state-of-the-art MLFFs (ET, NequIP, and ViSNet) and comprehensively evaluated on aspirin, Ac-Ala3-NHMe, and Chignolin MD datasets with the number of atoms ranging from 21 to 166. Driven by the trained MLFFs on these molecules, we performed MD simulations from different initial conformations, analyzed the relationship between the force metrics and the stability of simulation trajectories, and investigated the reason for collapsed simulations. Finally, the performance of MLFFs and the stability of MD simulations can be further improved guided by the proposed force metrics for model training, specifically training MLFF models with these force metrics as loss functions, fine-tuning by reweighting samples in the original dataset, and continued training by recruiting additional unexplored data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的向真应助C5b6789n采纳,获得10
刚刚
刚刚
烙激激完成签到,获得积分10
1秒前
鲁静萱完成签到 ,获得积分10
1秒前
kx完成签到,获得积分10
1秒前
科研小白完成签到,获得积分20
1秒前
1秒前
超cute宁发布了新的文献求助30
1秒前
三条鱼发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
大模型应助n27O72采纳,获得10
3秒前
Owen应助hanna采纳,获得10
3秒前
4秒前
nickthename完成签到,获得积分10
4秒前
4秒前
linan发布了新的文献求助10
4秒前
5秒前
hkh发布了新的文献求助10
5秒前
5秒前
HC完成签到,获得积分10
5秒前
5秒前
顺然发布了新的文献求助10
5秒前
木斗斗完成签到,获得积分10
6秒前
6秒前
pluto应助tough采纳,获得10
7秒前
7秒前
SYLH应助健珍采纳,获得10
7秒前
zz发布了新的文献求助10
7秒前
7秒前
三条鱼完成签到,获得积分10
8秒前
合适台灯发布了新的文献求助10
8秒前
香蕉觅云应助12138的9527采纳,获得10
9秒前
SYLH应助Shxu采纳,获得10
9秒前
pluto应助小天才儿童手表采纳,获得10
10秒前
10秒前
12233发布了新的文献求助10
10秒前
零相似发布了新的文献求助10
11秒前
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961392
求助须知:如何正确求助?哪些是违规求助? 3507731
关于积分的说明 11137649
捐赠科研通 3240136
什么是DOI,文献DOI怎么找? 1790806
邀请新用户注册赠送积分活动 872520
科研通“疑难数据库(出版商)”最低求助积分说明 803271