乙炔
拓扑(电路)
水准点(测量)
金属有机骨架
离子
分离(统计)
多孔性
材料科学
化学
计算机科学
纳米技术
工程类
有机化学
地质学
吸附
电气工程
机器学习
复合材料
大地测量学
作者
Yuanbin Zhang,Wanqi Sun,Binquan Luan,Jiahao Li,Dong Luo,Yunjia Jiang,Lingyao Wang,Banglin Chen
标识
DOI:10.1002/anie.202309925
摘要
Separation of acetylene (C2 H2 ) from carbon dioxide (CO2 ) or ethylene (C2 H4 ) is industrially important but still challenging so far. Herein, we developed two novel robust metal organic frameworks AlFSIX-Cu-TPBDA (ZNU-8) with znv topology and SIFSIX-Cu-TPBDA (ZNU-9) with wly topology for efficient capture of C2 H2 from CO2 and C2 H4 . Both ZNU-8 and ZNU-9 feature multiple anion functionalities and hierarchical porosity. Notably, ZNU-9 with more anionic binding sites and three distinct cages displays both an extremely large C2 H2 capacity (7.94 mmol/g) and a high C2 H2 /CO2 (10.3) or C2 H2 /C2 H4 (11.6) selectivity. The calculated capacity of C2 H2 per anion (4.94 mol/mol at 1 bar) is the highest among all the anion pillared metal organic frameworks. Theoretical calculation indicated that the strong cooperative hydrogen bonds exist between acetylene and the pillared SiF62- anions in the confined cavity, which is further confirmed by in situ IR spectra. The practical separation performance was explicitly demonstrated by dynamic breakthrough experiments with equimolar C2 H2 /CO2 mixtures and 1/99 C2 H2 /C2 H4 mixtures under various conditions with excellent recyclability and benchmark productivity of pure C2 H2 (5.13 mmol/g) or C2 H4 (48.57 mmol/g).
科研通智能强力驱动
Strongly Powered by AbleSci AI