A Novel Cell Membrane-Associated RNA Extraction Method and Its Application in the Discovery of Breast Cancer Markers

核糖核酸 RNA提取 化学 细胞 非编码RNA 细胞膜 基因 基因表达 癌细胞 分子生物学 癌症 计算生物学 生物 生物化学 遗传学
作者
Jiahui Lv,Ying Liu,Jiahu Tang,Hongjun Xiao,Ruibin Hu,Guanghui Wang,Dan Niu,Pan‐Lin Shao,Jingkai Yang,Ziqi Jin,Ziyi Xu,Bo Zhang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (31): 11706-11713 被引量:2
标识
DOI:10.1021/acs.analchem.3c01689
摘要

Cell membrane-associated RNA (mem-RNA) has been demonstrated to be cell-specific and disease-related and are considered as potential biomarkers for disease diagnostics, drug delivery, and cell screening. However, there is still a lack of methods specifically designed to extract mem-RNA from cells, limiting the discovery and applications of mem-RNA. In this study, we propose the first all-in-one solution for high-purity mem-RNA isolation based on two types of magnetic nanoparticles, named MREMB (Membrane-associated RNA Extraction based on Magnetic Beads), which achieved ten times enrichment of cell membrane components and over 90% recovery rate of RNA extraction. To demonstrate MREMB's potential in clinical research, we extracted and sequenced mem-RNA of typical breast cancer MCF-7, MDA-MB-231, and SKBR-3 cell lines and non-neoplastic breast epithelial cell MCF-10A. Compared to total RNA, sequencing results revealed that membrane/secreted protein-encoding mRNAs and long noncoding RNAs (lncRNAs) were enriched in the mem-RNA, some of which were significantly overexpressed in the three cancer cell lines, including extracellular matrix-related genes COL5A1 and lncRNA TALAM1. The results indicated that MREMB could enrich membrane/secreted protein-coding RNA and amplify the expression differences of related RNAs between cancer and non-neoplastic cells, promising for cancer biomarker discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
man完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
yyy发布了新的文献求助10
2秒前
2秒前
raccoon发布了新的文献求助10
3秒前
星星爱学习完成签到,获得积分10
4秒前
于于发布了新的文献求助10
4秒前
5秒前
dt发布了新的文献求助10
5秒前
无花果应助夜雨听风眠z采纳,获得10
5秒前
咿呀咿呀完成签到,获得积分10
6秒前
7秒前
Liu发布了新的文献求助10
8秒前
8秒前
花生生生生完成签到,获得积分10
9秒前
9秒前
迷人的冥完成签到,获得积分10
9秒前
10秒前
GC完成签到 ,获得积分10
10秒前
咿呀咿呀发布了新的文献求助10
11秒前
xiyue发布了新的文献求助10
12秒前
12秒前
celinewu完成签到,获得积分10
12秒前
12秒前
lhk完成签到,获得积分10
13秒前
田様应助wang采纳,获得10
14秒前
渡劫完成签到,获得积分10
14秒前
Tian发布了新的文献求助10
14秒前
文献来来来完成签到,获得积分10
14秒前
14秒前
15秒前
夏姬宁静完成签到,获得积分10
15秒前
1+1发布了新的文献求助10
15秒前
Marilinta完成签到,获得积分10
15秒前
15秒前
FashionBoy应助从容的方盒采纳,获得10
15秒前
chen1完成签到,获得积分20
16秒前
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300