ProGleason-GAN: Conditional progressive growing GAN for prostatic cancer Gleason grade patch synthesis

计算机科学 前列腺癌 样品(材料) 人工智能 公制(单位) 过程(计算) 接收机工作特性 前列腺 模式识别(心理学) 机器学习 癌症 医学 算法 内科学 经济 操作系统 化学 色谱法 运营管理
作者
Alejandro Golfe,Rocío del Amor,Adrián Colomer,María A. Sales,Liria Terrádez,Valery Naranjo
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107695-107695 被引量:6
标识
DOI:10.1016/j.cmpb.2023.107695
摘要

Prostate cancer is one of the most common diseases affecting men. The main diagnostic and prognostic reference tool is the Gleason scoring system. An expert pathologist assigns a Gleason grade to a sample of prostate tissue. As this process is very time-consuming, some artificial intelligence applications were developed to automatize it. The training process is often confronted with insufficient and unbalanced databases which affect the generalisability of the models. Therefore, the aim of this work is to develop a generative deep learning model capable of synthesising patches of any selected Gleason grade to perform data augmentation on unbalanced data and test the improvement of classification models.The methodology proposed in this work consists of a conditional Progressive Growing GAN (ProGleason-GAN) capable of synthesising prostate histopathological tissue patches by selecting the desired Gleason Grade cancer pattern in the synthetic sample. The conditional Gleason Grade information is introduced into the model through the embedding layers, so there is no need to add a term to the Wasserstein loss function. We used minibatch standard deviation and pixel normalisation to improve the performance and stability of the training process.The reality assessment of the synthetic samples was performed with the Frechet Inception Distance (FID). We obtained an FID metric of 88.85 for non-cancerous patterns, 81.86 for GG3, 49.32 for GG4 and 108.69 for GG5 after post-processing stain normalisation. In addition, a group of expert pathologists was selected to perform an external validation of the proposed framework. Finally, the application of our proposed framework improved the classification results in SICAPv2 dataset, proving its effectiveness as a data augmentation method.ProGleason-GAN approach combined with a stain normalisation post-processing provides state-of-the-art results regarding Frechet's Inception Distance. This model can synthesise samples of non-cancerous patterns, GG3, GG4 or GG5. The inclusion of conditional information about the Gleason grade during the training process allows the model to select the cancerous pattern in a synthetic sample. The proposed framework can be used as a data augmentation method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚龙完成签到,获得积分10
刚刚
汪jy完成签到,获得积分10
刚刚
lic驳回了所所应助
刚刚
理想国的过客完成签到,获得积分10
1秒前
寒梅完成签到,获得积分10
1秒前
乐乐乐乐乐乐乐完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
正好完成签到,获得积分10
3秒前
Sea_U发布了新的文献求助10
3秒前
zcccc完成签到,获得积分10
3秒前
小熙完成签到 ,获得积分10
3秒前
草莓完成签到,获得积分20
3秒前
佳佳528发布了新的文献求助10
4秒前
丁念关注了科研通微信公众号
5秒前
顾矜应助闾丘志泽采纳,获得30
5秒前
gqb完成签到,获得积分10
5秒前
5秒前
针地很不戳完成签到,获得积分10
5秒前
科研通AI2S应助luobo123采纳,获得10
6秒前
6秒前
Harevin完成签到,获得积分10
6秒前
7秒前
y_y发布了新的文献求助10
7秒前
7秒前
8秒前
Joseph完成签到,获得积分10
8秒前
8秒前
Antheali完成签到,获得积分10
8秒前
8秒前
乌龟娟完成签到,获得积分10
8秒前
9秒前
Chaha应助My采纳,获得20
9秒前
9秒前
9秒前
zbearupz发布了新的文献求助10
9秒前
月Y完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316178
求助须知:如何正确求助?哪些是违规求助? 4458584
关于积分的说明 13871458
捐赠科研通 4348446
什么是DOI,文献DOI怎么找? 2388234
邀请新用户注册赠送积分活动 1382343
关于科研通互助平台的介绍 1351743