ProGleason-GAN: Conditional progressive growing GAN for prostatic cancer Gleason grade patch synthesis

计算机科学 前列腺癌 样品(材料) 人工智能 公制(单位) 过程(计算) 接收机工作特性 前列腺 模式识别(心理学) 机器学习 癌症 医学 算法 内科学 化学 运营管理 色谱法 经济 操作系统
作者
Alejandro Golfe,Rocío del Amor,Adrián Colomer,María A. Sales,Liria Terrádez,Valery Naranjo
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107695-107695 被引量:6
标识
DOI:10.1016/j.cmpb.2023.107695
摘要

Prostate cancer is one of the most common diseases affecting men. The main diagnostic and prognostic reference tool is the Gleason scoring system. An expert pathologist assigns a Gleason grade to a sample of prostate tissue. As this process is very time-consuming, some artificial intelligence applications were developed to automatize it. The training process is often confronted with insufficient and unbalanced databases which affect the generalisability of the models. Therefore, the aim of this work is to develop a generative deep learning model capable of synthesising patches of any selected Gleason grade to perform data augmentation on unbalanced data and test the improvement of classification models.The methodology proposed in this work consists of a conditional Progressive Growing GAN (ProGleason-GAN) capable of synthesising prostate histopathological tissue patches by selecting the desired Gleason Grade cancer pattern in the synthetic sample. The conditional Gleason Grade information is introduced into the model through the embedding layers, so there is no need to add a term to the Wasserstein loss function. We used minibatch standard deviation and pixel normalisation to improve the performance and stability of the training process.The reality assessment of the synthetic samples was performed with the Frechet Inception Distance (FID). We obtained an FID metric of 88.85 for non-cancerous patterns, 81.86 for GG3, 49.32 for GG4 and 108.69 for GG5 after post-processing stain normalisation. In addition, a group of expert pathologists was selected to perform an external validation of the proposed framework. Finally, the application of our proposed framework improved the classification results in SICAPv2 dataset, proving its effectiveness as a data augmentation method.ProGleason-GAN approach combined with a stain normalisation post-processing provides state-of-the-art results regarding Frechet's Inception Distance. This model can synthesise samples of non-cancerous patterns, GG3, GG4 or GG5. The inclusion of conditional information about the Gleason grade during the training process allows the model to select the cancerous pattern in a synthetic sample. The proposed framework can be used as a data augmentation method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山山而川应助ddd采纳,获得30
刚刚
zho关闭了zho文献求助
刚刚
拣尽南枝完成签到 ,获得积分10
1秒前
lwroche发布了新的文献求助10
2秒前
隐形曼青应助雷小仙儿采纳,获得10
3秒前
充电宝应助123采纳,获得10
4秒前
悦耳冬萱完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
10秒前
WANG发布了新的文献求助10
12秒前
14秒前
Jasper应助依然灬聆听采纳,获得10
15秒前
15秒前
淡然平灵发布了新的文献求助10
16秒前
youngneuron发布了新的文献求助10
16秒前
17秒前
17秒前
nao1314完成签到,获得积分10
17秒前
Candice应助郭干成采纳,获得10
17秒前
酷波er应助科研白小白采纳,获得10
17秒前
慕青应助lili采纳,获得10
18秒前
19秒前
77完成签到,获得积分20
21秒前
尊敬的左蓝完成签到,获得积分20
22秒前
欧阳静芙发布了新的文献求助10
23秒前
23秒前
Ellen完成签到,获得积分10
24秒前
youngneuron完成签到,获得积分10
25秒前
何何完成签到 ,获得积分10
25秒前
深情安青应助鸿渐于陆采纳,获得10
27秒前
28秒前
zoey发布了新的文献求助10
33秒前
TUTUKing完成签到,获得积分10
36秒前
royrose完成签到 ,获得积分10
41秒前
一一应助WANG采纳,获得10
42秒前
42秒前
42秒前
zjq完成签到,获得积分10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
奈特消化系统医学图谱(第2版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3360706
求助须知:如何正确求助?哪些是违规求助? 2982987
关于积分的说明 8706327
捐赠科研通 2664776
什么是DOI,文献DOI怎么找? 1459389
科研通“疑难数据库(出版商)”最低求助积分说明 675426
邀请新用户注册赠送积分活动 666517