Artificial Intelligence in Histologic Diagnosis of Ductal Carcinoma In Situ

人工智能 支持向量机 预测值 卷积神经网络 机器学习 荟萃分析 灵敏度(控制系统) 工作量 诊断准确性 计算机科学 医学 模式识别(心理学) 病理 内科学 电子工程 工程类 操作系统
作者
Michael Co,Yik Ching Christy Lau,Yi Xuan Yvonne Qian,Man Chun Ryan Chan,Desiree Ka-ka Wong,Ka Ho Lui,Nicholas Yu Han So,Stephanie Wing Sum Tso,Yu Chee Lo,Woo Jung Lee,Elaine Wong
标识
DOI:10.1016/j.mcpdig.2023.05.008
摘要

A systematic review was conducted in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol to evaluate the diagnostic accuracy of artificial intelligence (AI) in ductal carcinoma in situ. Four databases were searched for articles up to December 2022: Embase, PubMed, Scopus, and Web of Science. 23 studies were included, and a search of grey literature was not performed. The following parameters were extracted: the accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of each study. Statistical analysis of the included studies revealed that AI-assisted histopathological analysis is of high accuracy (83.78%), sensitivity (83.88%), and specificity (85.49%) and has a high positive predictive value (89.43%). Our results also reported that convolutional neural network (CNN) is the most commonly used mode of machine learning—21 models used only CNN, whereas 2 models used only support vector machines (SVM). On an average, CNN reported slightly higher accuracy and sensitivity (86.71% and 85.22%, respectively) than SVM (accuracy, 85.00%; sensitivity, 70.00%). When the 2 methods were combined, a mean accuracy of 82.52% and a mean sensitivity of 83.00% were achieved. The use of AI as a diagnostic adjunct can markedly improve the accuracy and efficiency of DCIS diagnosis and can, therefore, reduce pathologists' workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gshwsh发布了新的文献求助10
刚刚
昏睡的蟠桃应助柳香芦采纳,获得10
刚刚
刚刚
充电宝应助任小萱采纳,获得10
刚刚
lll发布了新的文献求助10
刚刚
1秒前
1秒前
jjjmsekk发布了新的文献求助10
1秒前
科研通AI2S应助无辜洋葱采纳,获得10
1秒前
风趣凝海发布了新的文献求助10
2秒前
2秒前
3秒前
LEOhard发布了新的文献求助10
3秒前
Lily完成签到,获得积分10
3秒前
3秒前
潇洒的天与完成签到,获得积分10
4秒前
4秒前
恬恬应助木头人采纳,获得20
5秒前
华仔应助lll采纳,获得10
5秒前
安详可燕发布了新的文献求助10
6秒前
扎根发布了新的文献求助10
6秒前
蕾蕾发布了新的文献求助10
7秒前
科研通AI5应助Kryptonite采纳,获得10
7秒前
科研通AI5应助木易采纳,获得10
8秒前
zoiaii完成签到 ,获得积分10
8秒前
lei发布了新的文献求助10
8秒前
充电宝应助gao采纳,获得10
8秒前
luo0306发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
yezi发布了新的文献求助30
11秒前
11秒前
wcdwcd完成签到,获得积分20
11秒前
11秒前
12秒前
12秒前
sisyphus发布了新的文献求助20
13秒前
13秒前
wcdwcd发布了新的文献求助10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731957
求助须知:如何正确求助?哪些是违规求助? 3276317
关于积分的说明 9996422
捐赠科研通 2991854
什么是DOI,文献DOI怎么找? 1641806
邀请新用户注册赠送积分活动 780013
科研通“疑难数据库(出版商)”最低求助积分说明 748649