A Surrogate-Assisted Differential Evolution with Knowledge Transfer for Expensive Incremental Optimization Problems

计算机科学 替代模型 差异进化 进化算法 数学优化 进化计算 人工智能 趋同(经济学) 机器学习 数学 经济增长 经济
作者
Yuanchao Liu,Jianchang Liu,Jinliang Ding,Shangshang Yang,Yaochu Jin
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1039-1053 被引量:6
标识
DOI:10.1109/tevc.2023.3291697
摘要

In some real-world applications, the optimization problems may involve multiple design stages. At each design stage, the objective is incrementally modified by incorporating more decision variables and optimized. In addition, the fitness evaluations (FEs) are often highly costly. Such optimization problems can be called expensive incremental optimization problems (EIOPs). Despite their importance, EIOPs have not attracted much attention over the past few years. Since the objectives of different design stages are different but related, reusing the search experience from the past design stages is beneficial to the evolutionary search of the current design stage. Therefore, a surrogate-assisted differential evolution with knowledge transfer (SADE-KT) is proposed in this work, which aims to fill the current gap in solving EIOPs. The major merit of the proposed SADE-KT is its ability to seamlessly integrate knowledge transfer and the surrogate-assisted evolutionary search. In SADE-KT, a surrogate based hybrid knowledge transfer strategy is first proposed. This strategy makes it possible to reuse the knowledge captured from the past design stages by leveraging different knowledge transfer techniques. As a result, the convergence for the current design stage can be speeded up. Then, a two-level surrogate-assisted evolutionary search is developed to search for the optimum. Comprehensive empirical studies have demonstrated that the proposed algorithm works efficiently on EIOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
救我发布了新的文献求助10
1秒前
1秒前
开心妙之完成签到,获得积分20
1秒前
小二郎应助cora采纳,获得10
1秒前
桥豆麻袋发布了新的文献求助50
1秒前
1秒前
强壮的美女完成签到,获得积分10
1秒前
1秒前
领导范儿应助橘涂采纳,获得10
2秒前
静静静发布了新的文献求助10
2秒前
3秒前
3秒前
佐哥完成签到,获得积分10
3秒前
11111完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
霉头脑完成签到 ,获得积分10
4秒前
科研通AI6应助张默言采纳,获得10
4秒前
赘婿应助蓝书签采纳,获得30
5秒前
yx阿聪发布了新的文献求助10
6秒前
开心妙之发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
梁蓉完成签到,获得积分20
7秒前
Zidawhy发布了新的文献求助10
7秒前
7秒前
魔幻凡梦完成签到,获得积分10
7秒前
钦cc完成签到,获得积分10
7秒前
千里江山一只蝇完成签到,获得积分10
8秒前
8秒前
Nnn完成签到,获得积分10
8秒前
研友_knggYn完成签到,获得积分0
8秒前
学术芽完成签到,获得积分10
9秒前
9秒前
科研通AI6应助xwl采纳,获得10
10秒前
tmuguoli发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343