A Surrogate-Assisted Differential Evolution with Knowledge Transfer for Expensive Incremental Optimization Problems

计算机科学 替代模型 差异进化 进化算法 数学优化 进化计算 人工智能 趋同(经济学) 机器学习 数学 经济增长 经济
作者
Yuanchao Liu,Jianchang Liu,Jinliang Ding,Shangshang Yang,Yaochu Jin
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1039-1053 被引量:6
标识
DOI:10.1109/tevc.2023.3291697
摘要

In some real-world applications, the optimization problems may involve multiple design stages. At each design stage, the objective is incrementally modified by incorporating more decision variables and optimized. In addition, the fitness evaluations (FEs) are often highly costly. Such optimization problems can be called expensive incremental optimization problems (EIOPs). Despite their importance, EIOPs have not attracted much attention over the past few years. Since the objectives of different design stages are different but related, reusing the search experience from the past design stages is beneficial to the evolutionary search of the current design stage. Therefore, a surrogate-assisted differential evolution with knowledge transfer (SADE-KT) is proposed in this work, which aims to fill the current gap in solving EIOPs. The major merit of the proposed SADE-KT is its ability to seamlessly integrate knowledge transfer and the surrogate-assisted evolutionary search. In SADE-KT, a surrogate based hybrid knowledge transfer strategy is first proposed. This strategy makes it possible to reuse the knowledge captured from the past design stages by leveraging different knowledge transfer techniques. As a result, the convergence for the current design stage can be speeded up. Then, a two-level surrogate-assisted evolutionary search is developed to search for the optimum. Comprehensive empirical studies have demonstrated that the proposed algorithm works efficiently on EIOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
3秒前
现代宝宝完成签到,获得积分10
3秒前
璐璐发布了新的文献求助10
4秒前
4秒前
chongziccc完成签到 ,获得积分10
4秒前
阳光刺眼发布了新的文献求助10
4秒前
白月当归完成签到,获得积分10
5秒前
5秒前
ly完成签到,获得积分10
5秒前
调皮的萃完成签到,获得积分10
5秒前
dracovu完成签到,获得积分10
5秒前
感动城发布了新的文献求助10
5秒前
科研通AI6应助i7采纳,获得10
6秒前
无花果应助dudu采纳,获得30
7秒前
火星上秋尽完成签到,获得积分10
8秒前
8秒前
8秒前
太阳发布了新的文献求助10
8秒前
gggggggbao完成签到,获得积分10
9秒前
加贺发布了新的文献求助10
9秒前
10秒前
旷意发布了新的文献求助10
10秒前
Lexine发布了新的文献求助10
11秒前
11秒前
jeil完成签到,获得积分10
12秒前
鱼鱼子999发布了新的文献求助10
12秒前
AamirAli完成签到,获得积分10
13秒前
在水一方应助太阳采纳,获得10
13秒前
田様应助gggggggbao采纳,获得10
13秒前
14秒前
简单的鲜花完成签到,获得积分10
14秒前
科研通AI6应助lily采纳,获得10
14秒前
杨锐完成签到,获得积分10
15秒前
风趣从霜完成签到,获得积分10
15秒前
从容的完成签到 ,获得积分10
16秒前
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262