已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Surrogate-Assisted Differential Evolution with Knowledge Transfer for Expensive Incremental Optimization Problems

计算机科学 替代模型 差异进化 进化算法 数学优化 进化计算 人工智能 趋同(经济学) 机器学习 数学 经济增长 经济
作者
Yuanchao Liu,Jianchang Liu,Jinliang Ding,Shangshang Yang,Yaochu Jin
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1039-1053 被引量:6
标识
DOI:10.1109/tevc.2023.3291697
摘要

In some real-world applications, the optimization problems may involve multiple design stages. At each design stage, the objective is incrementally modified by incorporating more decision variables and optimized. In addition, the fitness evaluations (FEs) are often highly costly. Such optimization problems can be called expensive incremental optimization problems (EIOPs). Despite their importance, EIOPs have not attracted much attention over the past few years. Since the objectives of different design stages are different but related, reusing the search experience from the past design stages is beneficial to the evolutionary search of the current design stage. Therefore, a surrogate-assisted differential evolution with knowledge transfer (SADE-KT) is proposed in this work, which aims to fill the current gap in solving EIOPs. The major merit of the proposed SADE-KT is its ability to seamlessly integrate knowledge transfer and the surrogate-assisted evolutionary search. In SADE-KT, a surrogate based hybrid knowledge transfer strategy is first proposed. This strategy makes it possible to reuse the knowledge captured from the past design stages by leveraging different knowledge transfer techniques. As a result, the convergence for the current design stage can be speeded up. Then, a two-level surrogate-assisted evolutionary search is developed to search for the optimum. Comprehensive empirical studies have demonstrated that the proposed algorithm works efficiently on EIOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvsehx完成签到,获得积分10
1秒前
111完成签到,获得积分10
2秒前
3秒前
haha完成签到 ,获得积分10
5秒前
Huay完成签到 ,获得积分10
6秒前
10秒前
科研通AI2S应助Rui采纳,获得30
11秒前
lvsehx发布了新的文献求助10
12秒前
NexusExplorer应助ViVi采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
17秒前
王晓静完成签到 ,获得积分10
18秒前
19秒前
19秒前
爆米花应助酷酷一笑采纳,获得10
21秒前
绿夏发布了新的文献求助10
21秒前
张KT完成签到,获得积分10
21秒前
h0jian09完成签到,获得积分10
23秒前
小张同学完成签到 ,获得积分10
23秒前
24秒前
Aurora完成签到,获得积分20
24秒前
Hululu发布了新的文献求助10
25秒前
农夫完成签到,获得积分0
26秒前
曲蔚然完成签到 ,获得积分10
27秒前
后会无期完成签到,获得积分10
28秒前
多发paper啊完成签到,获得积分10
29秒前
慕青应助老迟到的友容采纳,获得10
32秒前
默默冬瓜发布了新的文献求助10
34秒前
小孔要早睡完成签到,获得积分20
36秒前
狂野的含烟完成签到 ,获得积分10
36秒前
37秒前
嗯哼完成签到,获得积分10
37秒前
37秒前
星落缘起发布了新的文献求助10
40秒前
耀星光完成签到,获得积分10
41秒前
wanci应助科研通管家采纳,获得10
42秒前
Liu应助科研通管家采纳,获得20
42秒前
wanci应助科研通管家采纳,获得10
42秒前
42秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980841
求助须知:如何正确求助?哪些是违规求助? 3524572
关于积分的说明 11221987
捐赠科研通 3261967
什么是DOI,文献DOI怎么找? 1801015
邀请新用户注册赠送积分活动 879582
科研通“疑难数据库(出版商)”最低求助积分说明 807343