Semantic-Edge Interactive Network for Salient Object Detection in Optical Remote Sensing Images

计算机科学 突出 GSM演进的增强数据速率 人工智能 解码方法 卷积神经网络 模式识别(心理学) 目标检测 计算机视觉 算法
作者
Huilan Luo,Bo Liang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 6980-6994
标识
DOI:10.1109/jstars.2023.3298512
摘要

Despite salient object detection in natural images has made remarkable progress, it is still an emerging and challenging problem to detect salient objects from optical remote sensing images [remote sensing image salient object detection (RSI-SOD)]. To improve RSI-SOD based on fully convolutional networks (FCNs), attention and edge awareness have been used separately to aid integration and refinement of multilevel features for effective decoding. Although they have been shown to semantically enhance salient features and reduce fuzzy boundaries, the correlation between the semantic-enhanced salient features and edge features is rarely explored, which has inspired the development of a new model to enable close interaction between semantic and edges for fully activating the advantages of attention and edge awareness, and led to the semantic-edge interactive network (SEINet) presented in this article. The proposed model consists of two interacting decoding branches based on the U-shaped network to achieve salient object detection (SOD) and salient edge detection (SED), and the multiscale attention interaction (MAI) module is proposed to provide edge-enhanced semantic for SOD and semantic-enhanced edge for SED interactively between the two branches. Moreover, to alleviate the problem of semantic dilution, the semantic-guided fusion (SF) module is proposed and deployed at the end of the SOD branch. From the extensive quantitative and qualitative comparison of the proposed model against the FCN-based models with and without incorporation of attention and edge awareness, the proposed model obtains the most stable scores at different thresholds of the $F$ -measure curve and outperforms 18 state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛牛牛完成签到,获得积分10
刚刚
秋石完成签到,获得积分10
1秒前
1秒前
1秒前
生动路人应助晓晓采纳,获得20
1秒前
双楠应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
坦率白萱应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
yar应助科研通管家采纳,获得10
3秒前
3秒前
早日暴富完成签到,获得积分10
4秒前
搜集达人应助virua00采纳,获得10
4秒前
hvivi6发布了新的文献求助10
5秒前
啊哭完成签到,获得积分10
7秒前
7秒前
icy_cyr完成签到,获得积分10
8秒前
9秒前
wp4605完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
斯文败类应助友好的以旋采纳,获得10
10秒前
潇洒书琴完成签到 ,获得积分10
10秒前
正直的傲丝完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
12秒前
Lucas应助小盼虫采纳,获得10
12秒前
xxxxxxx完成签到 ,获得积分10
12秒前
听小洛完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075