Semantic-Edge Interactive Network for Salient Object Detection in Optical Remote Sensing Images

计算机科学 突出 GSM演进的增强数据速率 人工智能 解码方法 卷积神经网络 模式识别(心理学) 目标检测 计算机视觉 算法
作者
Huilan Luo,Bo Liang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 6980-6994
标识
DOI:10.1109/jstars.2023.3298512
摘要

Despite salient object detection in natural images has made remarkable progress, it is still an emerging and challenging problem to detect salient objects from optical remote sensing images [remote sensing image salient object detection (RSI-SOD)]. To improve RSI-SOD based on fully convolutional networks (FCNs), attention and edge awareness have been used separately to aid integration and refinement of multilevel features for effective decoding. Although they have been shown to semantically enhance salient features and reduce fuzzy boundaries, the correlation between the semantic-enhanced salient features and edge features is rarely explored, which has inspired the development of a new model to enable close interaction between semantic and edges for fully activating the advantages of attention and edge awareness, and led to the semantic-edge interactive network (SEINet) presented in this article. The proposed model consists of two interacting decoding branches based on the U-shaped network to achieve salient object detection (SOD) and salient edge detection (SED), and the multiscale attention interaction (MAI) module is proposed to provide edge-enhanced semantic for SOD and semantic-enhanced edge for SED interactively between the two branches. Moreover, to alleviate the problem of semantic dilution, the semantic-guided fusion (SF) module is proposed and deployed at the end of the SOD branch. From the extensive quantitative and qualitative comparison of the proposed model against the FCN-based models with and without incorporation of attention and edge awareness, the proposed model obtains the most stable scores at different thresholds of the $F$ -measure curve and outperforms 18 state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hanzhenzhen完成签到,获得积分20
刚刚
湫Lee完成签到 ,获得积分10
1秒前
天阳完成签到,获得积分10
1秒前
yunyun发布了新的文献求助10
1秒前
郭家乐完成签到,获得积分10
1秒前
2秒前
斯文的白玉完成签到,获得积分10
2秒前
2秒前
Lize完成签到,获得积分10
2秒前
3秒前
FashionBoy应助整齐的泥猴桃采纳,获得10
3秒前
畅快的小懒虫完成签到,获得积分10
3秒前
4秒前
15327432191完成签到 ,获得积分10
4秒前
Rex发布了新的文献求助10
4秒前
大模型应助子车逍遥采纳,获得10
4秒前
幸福亦凝发布了新的文献求助10
5秒前
6秒前
杰尼龟的鱼完成签到 ,获得积分10
6秒前
huiwanfeifei发布了新的文献求助10
6秒前
lejunia发布了新的文献求助30
6秒前
啦啦啦啦完成签到,获得积分10
7秒前
桃之夭夭完成签到,获得积分10
8秒前
科研电催化完成签到,获得积分10
8秒前
1776734134完成签到 ,获得积分10
8秒前
geold发布了新的文献求助10
8秒前
8秒前
黄婷婷完成签到,获得积分10
8秒前
9秒前
orixero应助佳仔采纳,获得10
9秒前
五月雨完成签到,获得积分20
10秒前
10秒前
miz完成签到,获得积分10
10秒前
眼睛大初瑶完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
打打应助LZT采纳,获得10
12秒前
duoduo发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646071
求助须知:如何正确求助?哪些是违规求助? 4770105
关于积分的说明 15032959
捐赠科研通 4804652
什么是DOI,文献DOI怎么找? 2569176
邀请新用户注册赠送积分活动 1526218
关于科研通互助平台的介绍 1485748