Semantic-Edge Interactive Network for Salient Object Detection in Optical Remote Sensing Images

计算机科学 突出 GSM演进的增强数据速率 人工智能 解码方法 卷积神经网络 模式识别(心理学) 目标检测 计算机视觉 算法
作者
Huilan Luo,Bo Liang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 6980-6994
标识
DOI:10.1109/jstars.2023.3298512
摘要

Despite salient object detection in natural images has made remarkable progress, it is still an emerging and challenging problem to detect salient objects from optical remote sensing images [remote sensing image salient object detection (RSI-SOD)]. To improve RSI-SOD based on fully convolutional networks (FCNs), attention and edge awareness have been used separately to aid integration and refinement of multilevel features for effective decoding. Although they have been shown to semantically enhance salient features and reduce fuzzy boundaries, the correlation between the semantic-enhanced salient features and edge features is rarely explored, which has inspired the development of a new model to enable close interaction between semantic and edges for fully activating the advantages of attention and edge awareness, and led to the semantic-edge interactive network (SEINet) presented in this article. The proposed model consists of two interacting decoding branches based on the U-shaped network to achieve salient object detection (SOD) and salient edge detection (SED), and the multiscale attention interaction (MAI) module is proposed to provide edge-enhanced semantic for SOD and semantic-enhanced edge for SED interactively between the two branches. Moreover, to alleviate the problem of semantic dilution, the semantic-guided fusion (SF) module is proposed and deployed at the end of the SOD branch. From the extensive quantitative and qualitative comparison of the proposed model against the FCN-based models with and without incorporation of attention and edge awareness, the proposed model obtains the most stable scores at different thresholds of the $F$ -measure curve and outperforms 18 state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
daisy_chen完成签到,获得积分10
1秒前
xiaohu发布了新的文献求助10
1秒前
田様应助cg采纳,获得10
2秒前
HHHH完成签到,获得积分10
3秒前
winner发布了新的文献求助10
3秒前
4秒前
wxy发布了新的文献求助10
4秒前
舍予完成签到 ,获得积分10
4秒前
Owen应助拼搏的金针菇采纳,获得10
4秒前
麦木完成签到,获得积分10
5秒前
5秒前
5秒前
长风完成签到,获得积分10
5秒前
怡然尔芙发布了新的文献求助10
6秒前
6秒前
6秒前
王少辉发布了新的文献求助10
6秒前
小朱完成签到,获得积分10
7秒前
7秒前
清爽的路灯完成签到,获得积分10
7秒前
8秒前
麦木发布了新的文献求助10
9秒前
9秒前
wjy完成签到,获得积分10
9秒前
zhiping发布了新的文献求助10
10秒前
10秒前
传奇3应助yjy采纳,获得10
11秒前
王彬完成签到,获得积分10
11秒前
CC完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
li123xxx完成签到,获得积分10
12秒前
12秒前
vk发布了新的文献求助20
13秒前
13秒前
123pc发布了新的文献求助10
13秒前
怡然尔芙完成签到,获得积分10
14秒前
cg发布了新的文献求助10
14秒前
14秒前
Hobobi完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5112070
求助须知:如何正确求助?哪些是违规求助? 4320005
关于积分的说明 13460639
捐赠科研通 4150914
什么是DOI,文献DOI怎么找? 2274512
邀请新用户注册赠送积分活动 1276377
关于科研通互助平台的介绍 1214608