Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting

计算机科学 成对比较 超图 联营 数据挖掘 图形 代表(政治) 水准点(测量) 理论计算机科学 块(置换群论) 节点(物理) 人工智能 机器学习 数学 工程类 几何学 离散数学 政治 结构工程 法学 地理 政治学 大地测量学
作者
Yusheng Zhao,Xiao Luo,Wei Ju,Chong Chen,Xian‐Sheng Hua,Ming Zhang
标识
DOI:10.1109/icde55515.2023.00178
摘要

This paper studies the problem of traffic flow forecasting, which aims to predict future traffic conditions on the basis of road networks and traffic conditions in the past. The problem is typically solved by modeling complex spatio-temporal correlations in traffic data using spatio-temporal graph neural networks (GNNs). However, the performance of these methods is still far from satisfactory since GNNs usually have limited representation capacity when it comes to complex traffic networks. Graphs, by nature, fall short in capturing non-pairwise relations. Even worse, existing methods follow the paradigm of message passing that aggregates neighborhood information linearly, which fails to capture complicated spatio-temporal high-order interactions. To tackle these issues, in this paper, we propose a novel model named Dynamic Hypergraph Structure Learning (DyHSL) for traffic flow prediction. To learn non-pairwise relationships, our DyHSL extracts hypergraph structural information to model dynamics in the traffic networks, and updates each node representation by aggregating messages from its associated hyperedges. Additionally, to capture high-order spatio-temporal relations in the road network, we introduce an interactive graph convolution block, which further models the neighborhood interaction for each node. Finally, we integrate these two views into a holistic multi-scale correlation extraction module, which conducts temporal pooling with different scales to model different temporal patterns. Extensive experiments on four popular traffic benchmark datasets demonstrate the effectiveness of our proposed DyHSL compared with a broad range of competing baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助安谢采纳,获得10
2秒前
hhx完成签到,获得积分10
4秒前
5秒前
5秒前
paper完成签到 ,获得积分10
8秒前
田様应助xiaoguo采纳,获得10
9秒前
9秒前
叶子发布了新的文献求助20
9秒前
狄狄发布了新的文献求助10
9秒前
阿皮完成签到,获得积分10
12秒前
14秒前
科学家发布了新的文献求助10
14秒前
晓书完成签到 ,获得积分10
15秒前
Sew东坡完成签到,获得积分10
16秒前
17秒前
天天快乐应助whale采纳,获得10
17秒前
羊青丝发布了新的文献求助10
18秒前
啵叽一口发布了新的文献求助10
18秒前
天天快乐应助spirit 雪采纳,获得30
19秒前
orixero应助呆萌雪晴采纳,获得10
19秒前
24秒前
25秒前
羊青丝完成签到,获得积分10
28秒前
spirit 雪发布了新的文献求助30
30秒前
32秒前
kreatal发布了新的文献求助10
37秒前
佰白完成签到,获得积分10
37秒前
顾矜应助yangyang采纳,获得10
37秒前
39秒前
呆萌雪晴完成签到,获得积分10
41秒前
42秒前
ding应助kreatal采纳,获得10
42秒前
44秒前
研友_nqv2WZ发布了新的文献求助100
45秒前
宁少爷应助abc采纳,获得50
47秒前
呆萌雪晴发布了新的文献求助10
48秒前
李佳倩发布了新的文献求助30
48秒前
50秒前
50秒前
53秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240722
求助须知:如何正确求助?哪些是违规求助? 2885466
关于积分的说明 8238658
捐赠科研通 2553893
什么是DOI,文献DOI怎么找? 1382010
科研通“疑难数据库(出版商)”最低求助积分说明 649440
邀请新用户注册赠送积分活动 625079