随机森林
Boosting(机器学习)
人工神经网络
梯度升压
集成学习
结算(财务)
均方预测误差
集合预报
人工智能
计算机科学
平均绝对误差
均方误差
机器学习
气象学
统计
数学
地理
万维网
付款
作者
Tatiana Richa,Selmane Lebdaoui,Jean‐Michel Pereira,Gilles Chapron,Lina-María Guayacán-Carrillo
标识
DOI:10.1061/9780784484975.023
摘要
The purpose of this study is to apply ensemble methods to predict surface settlement induced by earth pressure balance tunnel boring machine. Random forest (RF) and Extreme Gradient Boosting (XGBoost) algorithms are applied on 1,101 settlement measurements collected from the Grand Paris Express project. The results are compared with the performance of the back-propagation artificial neural networks (BPNN). Finally, the results show that both ensemble methods XGBoost and RF are better than BPNN based on R² and RMSE indicators.
科研通智能强力驱动
Strongly Powered by AbleSci AI