High-loaded single-atom Cu-N3 sites catalyze hydrogen peroxide decomposition to selectively induce singlet oxygen production for wastewater purification

单线态氧 过氧化氢 催化作用 分解 化学 单重态 光化学 碳纤维 过氧化物 Atom(片上系统) 降级(电信) 氧气 无机化学 材料科学 有机化学 激发态 核物理学 嵌入式系统 计算机科学 物理 电信 复合数 复合材料
作者
Fuhang Xu,Cui Lai,Mingming Zhang,Bisheng Li,Ling Li,Shiyu Liu,Liguo Shen,Xuerong Zhou,Huchuan Yan,Xiuqin Huo,Biting Wang,Huan Yi,Lei Qin,Lin Tang
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:339: 123075-123075 被引量:58
标识
DOI:10.1016/j.apcatb.2023.123075
摘要

Single-atom catalysts (SACs) have been widely used in Fenton-like water treatment, but studies on the selective induction of H2O2 to produce singlet oxygen (1O2) are rare. Herein, a carbon nitride supported high-loaded single-atom Cu-N3 catalyst (Cu-CN, Cu load is 15.46 wt%) is prepared to activate H2O2 to selectively form 1O2. Experimental and DFT calculation results reveal that the key factor for 1O2 production is the Cu-N3 coordination structure. Specifically, Cu-N3 coordination structure is conducive to decomposing H2O2 into·OOH/·O2-. Besides, the density of Cu-N3 sites is another key factor, high Cu-N3 site density is conducive to the rapid conversion of·OOH/·O2- to 1O2. Benefitting from the dominant role of 1O2, the Fenton-like degradation performance of Cu-CN/ H2O2 system is not disturbed under high salinity conditions, and the performance is significantly enhanced at high pH. This work represents an important reference in understanding SACs for activated H2O2 to generate 1O2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳的乐松完成签到,获得积分10
1秒前
星星泡饭发布了新的文献求助10
1秒前
着急的语儿完成签到,获得积分10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
差劲先森完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
科目三应助goodgoodstudy采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
Wu发布了新的文献求助10
2秒前
2秒前
lemon应助科研通管家采纳,获得20
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
打打应助聪聪great采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
无名完成签到,获得积分10
3秒前
打打应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得40
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
只A不B应助科研通管家采纳,获得30
3秒前
3秒前
SYanan完成签到 ,获得积分10
4秒前
Owen应助大方嵩采纳,获得10
4秒前
5秒前
5秒前
5秒前
耍酷花卷发布了新的文献求助10
5秒前
孟陬十一完成签到,获得积分10
6秒前
6秒前
搞怪的凡蕾完成签到,获得积分10
7秒前
8秒前
8秒前
万能图书馆应助刘星星采纳,获得10
9秒前
Ting完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762