亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extracting Semantic-Dynamic Features for Long-Term Stable Brain Computer Interface

脑-机接口 计算机科学 稳健性(进化) 人工智能 特征提取 人工神经网络 特征向量 接口(物质) 特征(语言学) 语义学(计算机科学) 模式识别(心理学) 机器学习 脑电图 心理学 生物化学 化学 语言学 哲学 气泡 精神科 最大气泡压力法 并行计算 基因 程序设计语言
作者
Tao Fang,Qian Zheng,Qi Yu,Gang Pan
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (5): 5965-5973 被引量:2
标识
DOI:10.1609/aaai.v37i5.25738
摘要

Brain-computer Interface (BCI) builds a neural signal to the motor command pathway, which is a prerequisite for the realization of neural prosthetics. However, a long-term stable BCI suffers from the neural data drift across days while retraining the BCI decoder is expensive and restricts its application scenarios. Recent solutions of neural signal recalibration treat the continuous neural signals as discrete, which is less effective in temporal feature extraction. Inspired by the observation from biologists that low-dimensional dynamics could describe high-dimensional neural signals, we model the underlying neural dynamics and propose a semantic-dynamic feature that represents the semantics and dynamics in a shared feature space facilitating the BCI recalibration. Besides, we present the joint distribution alignment instead of the common used marginal alignment strategy, dealing with the various complex changes in neural data distribution. Our recalibration approach achieves state-of-the-art performance on the real neural data of two monkeys in both classification and regression tasks. Our approach is also evaluated on a simulated dataset, which indicates its robustness in dealing with various common causes of neural signal instability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
dawn发布了新的文献求助10
13秒前
善学以致用应助Fluoxtine采纳,获得10
27秒前
黑鲨完成签到 ,获得积分10
27秒前
Ava应助粗暴的坤采纳,获得10
30秒前
瘦瘦的迎南完成签到 ,获得积分10
32秒前
33秒前
谷雨秋发布了新的文献求助10
36秒前
46秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
J_Xu完成签到 ,获得积分10
1分钟前
所所应助凛玖niro采纳,获得10
1分钟前
1分钟前
凛玖niro发布了新的文献求助10
1分钟前
霖槿完成签到,获得积分10
1分钟前
1分钟前
十八完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
liuliu发布了新的文献求助30
3分钟前
3分钟前
烟花应助Li采纳,获得10
3分钟前
liuliu完成签到,获得积分20
3分钟前
3分钟前
4分钟前
ataybabdallah完成签到,获得积分10
4分钟前
4分钟前
4分钟前
开朗大雁完成签到 ,获得积分10
4分钟前
上官若男应助Marshall采纳,获得10
4分钟前
4分钟前
4分钟前
Marshall发布了新的文献求助10
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587