Cross modality generative learning framework for anatomical transitive Magnetic Resonance Imaging (MRI) from Electrical Impedance Tomography (EIT) image

电阻抗断层成像 磁共振成像 人工智能 计算机科学 模态(人机交互) 断层摄影术 物理 计算机视觉 模式识别(心理学) 医学 光学 放射科
作者
Zuojun Wang,Mehmood Nawaz,Sheheryar Khan,Peking Xia,Muhammad Irfan,Eddie C. Wong,Russell W. Chan,Peng Cao
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:108: 102272-102272 被引量:4
标识
DOI:10.1016/j.compmedimag.2023.102272
摘要

This paper presents a cross-modality generative learning framework for transitive magnetic resonance imaging (MRI) from electrical impedance tomography (EIT). The proposed framework is aimed at converting low-resolution EIT images to high-resolution wrist MRI images using a cascaded cycle generative adversarial network (CycleGAN) model. This model comprises three main components: the collection of initial EIT from the medical device, the generation of a high-resolution transitive EIT image from the corresponding MRI image for domain adaptation, and the coalescence of two CycleGAN models for cross-modality generation. The initial EIT image was generated at three different frequencies (70 kHz, 140 kHz, and 200 kHz) using a 16-electrode belt. Wrist T1-weighted images were acquired on a 1.5T MRI. A total of 19 normal volunteers were imaged using both EIT and MRI, which resulted in 713 paired EIT and MRI images. The cascaded CycleGAN, end-to-end CycleGAN, and Pix2Pix models were trained and tested on the same cohort. The proposed method achieved the highest accuracy in bone detection, with 0.97 for the proposed cascaded CycleGAN, 0.68 for end-to-end CycleGAN, and 0.70 for the Pix2Pix model. Visual inspection showed that the proposed method reduced bone-related errors in the MRI-style anatomical reference compared with end-to-end CycleGAN and Pix2Pix. Multifrequency EIT inputs reduced the testing normalized root mean squared error of MRI-style anatomical reference from 67.9% ± 12.7% to 61.4% ± 8.8% compared with that of single-frequency EIT. The mean conductivity values of fat and bone from regularized EIT were 0.0435 ± 0.0379 S/m and 0.0183 ± 0.0154 S/m, respectively, when the anatomical prior was employed. These results demonstrate that the proposed framework is able to generate MRI-style anatomical references from EIT images with a good degree of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
科研通AI5应助谢朝邦采纳,获得10
1秒前
如意完成签到,获得积分10
1秒前
CipherSage应助GOODYUE采纳,获得10
1秒前
1秒前
2秒前
cjq完成签到,获得积分10
2秒前
2秒前
小马甲应助123采纳,获得10
3秒前
Long完成签到,获得积分10
3秒前
4秒前
晚生四时完成签到,获得积分10
4秒前
4秒前
4秒前
长情洙发布了新的文献求助10
4秒前
天真的宝马完成签到,获得积分10
4秒前
5秒前
肉松小贝完成签到,获得积分10
5秒前
6秒前
6秒前
HEIKU应助yangyangyang采纳,获得10
6秒前
Esfuerzo完成签到,获得积分10
6秒前
科研通AI5应助安静的安寒采纳,获得10
7秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
7秒前
royan2完成签到,获得积分10
7秒前
阿勒泰完成签到,获得积分10
7秒前
小于爱科研完成签到,获得积分10
7秒前
7秒前
zkc完成签到,获得积分10
7秒前
7秒前
luo发布了新的文献求助30
7秒前
雾蓝发布了新的文献求助10
7秒前
8秒前
zhang发布了新的文献求助10
8秒前
佳佳发布了新的文献求助10
9秒前
royan2发布了新的文献求助10
9秒前
9秒前
zkc发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759