Cross modality generative learning framework for anatomical transitive Magnetic Resonance Imaging (MRI) from Electrical Impedance Tomography (EIT) image

电阻抗断层成像 磁共振成像 人工智能 计算机科学 模态(人机交互) 断层摄影术 物理 计算机视觉 模式识别(心理学) 医学 光学 放射科
作者
Zuojun Wang,Mehmood Nawaz,Sheheryar Khan,Peking Xia,Muhammad Irfan,Eddie C. Wong,Russell W. Chan,Peng Cao
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:108: 102272-102272 被引量:4
标识
DOI:10.1016/j.compmedimag.2023.102272
摘要

This paper presents a cross-modality generative learning framework for transitive magnetic resonance imaging (MRI) from electrical impedance tomography (EIT). The proposed framework is aimed at converting low-resolution EIT images to high-resolution wrist MRI images using a cascaded cycle generative adversarial network (CycleGAN) model. This model comprises three main components: the collection of initial EIT from the medical device, the generation of a high-resolution transitive EIT image from the corresponding MRI image for domain adaptation, and the coalescence of two CycleGAN models for cross-modality generation. The initial EIT image was generated at three different frequencies (70 kHz, 140 kHz, and 200 kHz) using a 16-electrode belt. Wrist T1-weighted images were acquired on a 1.5T MRI. A total of 19 normal volunteers were imaged using both EIT and MRI, which resulted in 713 paired EIT and MRI images. The cascaded CycleGAN, end-to-end CycleGAN, and Pix2Pix models were trained and tested on the same cohort. The proposed method achieved the highest accuracy in bone detection, with 0.97 for the proposed cascaded CycleGAN, 0.68 for end-to-end CycleGAN, and 0.70 for the Pix2Pix model. Visual inspection showed that the proposed method reduced bone-related errors in the MRI-style anatomical reference compared with end-to-end CycleGAN and Pix2Pix. Multifrequency EIT inputs reduced the testing normalized root mean squared error of MRI-style anatomical reference from 67.9% ± 12.7% to 61.4% ± 8.8% compared with that of single-frequency EIT. The mean conductivity values of fat and bone from regularized EIT were 0.0435 ± 0.0379 S/m and 0.0183 ± 0.0154 S/m, respectively, when the anatomical prior was employed. These results demonstrate that the proposed framework is able to generate MRI-style anatomical references from EIT images with a good degree of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔡从安完成签到,获得积分20
1秒前
wzjs发布了新的文献求助10
1秒前
windyhill完成签到,获得积分10
2秒前
迪琛完成签到,获得积分10
3秒前
巴达天使完成签到,获得积分10
3秒前
3秒前
蜡笔小新发布了新的文献求助10
3秒前
4秒前
curtisness应助Su采纳,获得10
6秒前
Lucy完成签到 ,获得积分20
6秒前
7秒前
121212完成签到,获得积分10
9秒前
GD发布了新的文献求助10
10秒前
小马甲应助周凡淇采纳,获得10
10秒前
星辰大海应助周凡淇采纳,获得10
10秒前
酷波er应助周凡淇采纳,获得10
10秒前
JamesPei应助周凡淇采纳,获得10
10秒前
爱吃西瓜应助周凡淇采纳,获得10
10秒前
pluto应助周凡淇采纳,获得10
10秒前
从容芮应助周凡淇采纳,获得10
10秒前
科研通AI2S应助周凡淇采纳,获得10
10秒前
彭大应助周凡淇采纳,获得10
10秒前
爆米花应助周凡淇采纳,获得10
10秒前
Kate关注了科研通微信公众号
11秒前
淡淡的向雁完成签到,获得积分10
12秒前
12秒前
121212发布了新的文献求助10
12秒前
13秒前
李健的小迷弟应助哈哈哈采纳,获得10
13秒前
Ninico完成签到,获得积分10
13秒前
marc107关注了科研通微信公众号
14秒前
jack完成签到,获得积分10
14秒前
黄橙子完成签到 ,获得积分10
15秒前
煎熬日完成签到,获得积分10
15秒前
笨笨歌曲发布了新的文献求助10
15秒前
蜡笔小新完成签到,获得积分10
15秒前
管理想完成签到,获得积分10
16秒前
16秒前
NexusExplorer应助yangziwei采纳,获得10
17秒前
大模型应助zcg采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137260
求助须知:如何正确求助?哪些是违规求助? 2788392
关于积分的说明 7785921
捐赠科研通 2444458
什么是DOI,文献DOI怎么找? 1299916
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023