铁电性
哈夫尼亚
材料科学
纳米
缩放比例
纳米尺度
工程物理
分解水
凝聚态物理
纳米技术
光电子学
化学物理
陶瓷
复合材料
电介质
数学
化学
催化作用
立方氧化锆
物理
几何学
光催化
生物化学
作者
Ran Su,Jiahui Zhang,Vienna Wong,Dawei Zhang,Yong Yang,Zheng‐Dong Luo,Xiaojing Wang,Hui Wen,Yang Liu,Jan Seidel,Xiaolong Yang,Ying Pan,Fa‐tang Li
标识
DOI:10.1002/adma.202303018
摘要
Reversible control of ferroelectric polarization is essential to overcome the heterocatalytic kinetic limitation. This can be achieved by creating a surface with switchable electron density; however, owing to the rigidity of traditional ferroelectric oxides, achieving polarization reversal in piezocatalytic processes remains challenging. Herein, sub-nanometer-sized Hf0.5 Zr0.5 O2 (HZO) nanowires with a polymer-like flexibility are synthesized. Oxygen K-edge X-ray absorption spectroscopy and negative spherical aberration-corrected transmission electron microscopy reveal an orthorhombic (Pca21 ) ferroelectric phase of the HZO sub-nanometer wires (SNWs). The ferroelectric polarization of the flexible HZO SNWs can be easily switched by slight external vibration, resulting in dynamic modulation of the binding energy of adsorbates and thus breaking the "scaling relationship" during piezocatalysis. Consequently, the as-synthesized ultrathin HZO nanowires display superb water-splitting activity, with H2 production rate of 25687 µmol g-1 h-1 under 40 kHz ultrasonic vibration, which is 235 and 41 times higher than those of non-ferroelectric hafnium oxides and rigid BaTiO3 nanoparticles, respectively. More strikingly, the hydrogen production rates can reach 5.2 µmol g-1 h-1 by addition of stirring exclusively.
科研通智能强力驱动
Strongly Powered by AbleSci AI