Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study

医学 接收机工作特性 磁共振成像 肺癌 无线电技术 回顾性队列研究 放射科 表皮生长因子受体 癌症 肿瘤科 内科学
作者
Shaoping Hou,Hongbo Wang,Xiaoyu Wang,Huanhuan Chen,Baosen Zhou,Raymond D. Meng,Xianzheng Sha,Shijie Chang,Huan Wang,Wenyan Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (2): 1083-1091
标识
DOI:10.1002/mp.16581
摘要

Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non-small-cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision-making.To explore the value of tumor-liver interface (TLI)-based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM.This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast-enhanced T1-weighted (CET1) and T2-weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS-TLI) and the whole tumor (RS-W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis.A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS-TLI showed better prediction performance than RS-W in the training (AUCs, RS-TLI vs. RS-W, 0.842 vs. 0.797), internal validation (AUCs, RS-TLI vs. RS-W, 0.771 vs. 0.676) and external validation (AUCs, RS-TLI vs. RS-W, 0.733 vs. 0.679) cohort.Our study demonstrated that TLI-based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi-parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岩中花树完成签到,获得积分10
刚刚
刚刚
科研小白完成签到,获得积分10
1秒前
1秒前
追梦发布了新的文献求助10
1秒前
1秒前
豆包完成签到,获得积分10
1秒前
怕孤单的耳机完成签到,获得积分10
1秒前
成就梦松发布了新的文献求助10
1秒前
Donnie发布了新的文献求助10
2秒前
scc完成签到,获得积分10
2秒前
呼叫554发布了新的文献求助30
2秒前
Ava应助向北游采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
科研通AI5应助MRCHONG采纳,获得10
3秒前
Simon应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
wangg完成签到,获得积分20
3秒前
3秒前
Zn应助科研通管家采纳,获得20
3秒前
吹雪完成签到,获得积分0
3秒前
暴躁四叔应助科研通管家采纳,获得20
4秒前
4秒前
wanci应助科研通管家采纳,获得30
4秒前
4秒前
hhh发布了新的文献求助10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
Angelo完成签到 ,获得积分10
5秒前
xxxidgkris发布了新的文献求助30
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672