已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study

医学 射线照相术 接收机工作特性 二尖瓣反流 放射科 射血分数 反流(循环) 内科学 心脏病学 狭窄 心力衰竭
作者
Daiju Ueda,Toshimasa Matsumoto,Shoichi Ehara,Akira Yamamoto,Shannon L. Walston,Asahiro Ito,Taro Shimono,Masatsugu Shiba,Tohru Takeshita,Daiju Fukuda,Yukio Miki
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (8): e525-e533 被引量:15
标识
DOI:10.1016/s2589-7500(23)00107-3
摘要

Chest radiography is a common and widely available examination. Although cardiovascular structures-such as cardiac shadows and vessels-are visible on chest radiographs, the ability of these radiographs to estimate cardiac function and valvular disease is poorly understood. Using datasets from multiple institutions, we aimed to develop and validate a deep-learning model to simultaneously detect valvular disease and cardiac functions from chest radiographs.In this model development and validation study, we trained, validated, and externally tested a deep learning-based model to classify left ventricular ejection fraction, tricuspid regurgitant velocity, mitral regurgitation, aortic stenosis, aortic regurgitation, mitral stenosis, tricuspid regurgitation, pulmonary regurgitation, and inferior vena cava dilation from chest radiographs. The chest radiographs and associated echocardiograms were collected from four institutions between April 1, 2013, and Dec 31, 2021: we used data from three sites (Osaka Metropolitan University Hospital, Osaka, Japan; Habikino Medical Center, Habikino, Japan; and Morimoto Hospital, Osaka, Japan) for training, validation, and internal testing, and data from one site (Kashiwara Municipal Hospital, Kashiwara, Japan) for external testing. We evaluated the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy.We included 22 551 radiographs associated with 22 551 echocardiograms obtained from 16 946 patients. The external test dataset featured 3311 radiographs from 2617 patients with a mean age of 72 years [SD 15], of whom 49·8% were male and 50·2% were female. The AUCs, accuracy, sensitivity, and specificity for this dataset were 0·92 (95% CI 0·90-0·95), 86% (85-87), 82% (75-87), and 86% (85-88) for classifying the left ventricular ejection fraction at a 40% cutoff, 0·85 (0·83-0·87), 75% (73-76), 83% (80-87), and 73% (71-75) for classifying the tricuspid regurgitant velocity at a 2·8 m/s cutoff, 0·89 (0·86-0·92), 85% (84-86), 82% (76-87), and 85% (84-86) for classifying mitral regurgitation at the none-mild versus moderate-severe cutoff, 0·83 (0·78-0·88), 73% (71-74), 79% (69-87), and 72% (71-74) for classifying aortic stenosis, 0·83 (0·79-0·87), 68% (67-70), 88% (81-92), and 67% (66-69) for classifying aortic regurgitation, 0·86 (0·67-1·00), 90% (89-91), 83% (36-100), and 90% (89-91) for classifying mitral stenosis, 0·92 (0·89-0·94), 83% (82-85), 87% (83-91), and 83% (82-84) for classifying tricuspid regurgitation, 0·86 (0·82-0·90), 69% (68-71), 91% (84-95), and 68% (67-70) for classifying pulmonary regurgitation, and 0·85 (0·81-0·89), 86% (85-88), 73% (65-81), and 87% (86-88) for classifying inferior vena cava dilation.The deep learning-based model can accurately classify cardiac functions and valvular heart diseases using information from digital chest radiographs. This model can classify values typically obtained from echocardiography in a fraction of the time, with low system requirements and the potential to be continuously available in areas where echocardiography specialists are scarce or absent.None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助陈静采纳,获得10
1秒前
科研通AI6应助老实新筠采纳,获得10
3秒前
icewcq关注了科研通微信公众号
3秒前
3秒前
古夕发布了新的文献求助10
4秒前
会笑的蜗牛完成签到,获得积分10
4秒前
英姑应助probiotics采纳,获得30
5秒前
7秒前
9秒前
9秒前
10秒前
10秒前
11秒前
从容芮举报northisland求助涉嫌违规
13秒前
13秒前
橘子橙发布了新的文献求助10
14秒前
小怪兽完成签到 ,获得积分10
14秒前
wanci应助淳于寻冬采纳,获得10
14秒前
14秒前
orixero应助JokerC采纳,获得10
15秒前
小恐龙发布了新的文献求助10
15秒前
孙泉发布了新的文献求助10
15秒前
王子瑞完成签到 ,获得积分10
17秒前
陈静发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
19秒前
19秒前
gqkfw发布了新的文献求助10
19秒前
20秒前
icewcq发布了新的文献求助10
21秒前
浮游应助爱听歌酸奶采纳,获得10
21秒前
思源应助孙泉采纳,获得10
21秒前
占稚晴完成签到,获得积分10
22秒前
22秒前
老谢发布了新的文献求助10
23秒前
斯文败类应助l98916采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908965
求助须知:如何正确求助?哪些是违规求助? 4185518
关于积分的说明 12997876
捐赠科研通 3952390
什么是DOI,文献DOI怎么找? 2167485
邀请新用户注册赠送积分活动 1185981
关于科研通互助平台的介绍 1092501