Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study

医学 射线照相术 接收机工作特性 二尖瓣反流 放射科 射血分数 反流(循环) 内科学 心脏病学 狭窄 心力衰竭
作者
Daiju Ueda,Toshimasa Matsumoto,Shoichi Ehara,Akira Yamamoto,Shannon L. Walston,Asahiro Ito,Taro Shimono,Masatsugu Shiba,Tohru Takeshita,Daiju Fukuda,Yukio Miki
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (8): e525-e533 被引量:15
标识
DOI:10.1016/s2589-7500(23)00107-3
摘要

Chest radiography is a common and widely available examination. Although cardiovascular structures-such as cardiac shadows and vessels-are visible on chest radiographs, the ability of these radiographs to estimate cardiac function and valvular disease is poorly understood. Using datasets from multiple institutions, we aimed to develop and validate a deep-learning model to simultaneously detect valvular disease and cardiac functions from chest radiographs.In this model development and validation study, we trained, validated, and externally tested a deep learning-based model to classify left ventricular ejection fraction, tricuspid regurgitant velocity, mitral regurgitation, aortic stenosis, aortic regurgitation, mitral stenosis, tricuspid regurgitation, pulmonary regurgitation, and inferior vena cava dilation from chest radiographs. The chest radiographs and associated echocardiograms were collected from four institutions between April 1, 2013, and Dec 31, 2021: we used data from three sites (Osaka Metropolitan University Hospital, Osaka, Japan; Habikino Medical Center, Habikino, Japan; and Morimoto Hospital, Osaka, Japan) for training, validation, and internal testing, and data from one site (Kashiwara Municipal Hospital, Kashiwara, Japan) for external testing. We evaluated the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy.We included 22 551 radiographs associated with 22 551 echocardiograms obtained from 16 946 patients. The external test dataset featured 3311 radiographs from 2617 patients with a mean age of 72 years [SD 15], of whom 49·8% were male and 50·2% were female. The AUCs, accuracy, sensitivity, and specificity for this dataset were 0·92 (95% CI 0·90-0·95), 86% (85-87), 82% (75-87), and 86% (85-88) for classifying the left ventricular ejection fraction at a 40% cutoff, 0·85 (0·83-0·87), 75% (73-76), 83% (80-87), and 73% (71-75) for classifying the tricuspid regurgitant velocity at a 2·8 m/s cutoff, 0·89 (0·86-0·92), 85% (84-86), 82% (76-87), and 85% (84-86) for classifying mitral regurgitation at the none-mild versus moderate-severe cutoff, 0·83 (0·78-0·88), 73% (71-74), 79% (69-87), and 72% (71-74) for classifying aortic stenosis, 0·83 (0·79-0·87), 68% (67-70), 88% (81-92), and 67% (66-69) for classifying aortic regurgitation, 0·86 (0·67-1·00), 90% (89-91), 83% (36-100), and 90% (89-91) for classifying mitral stenosis, 0·92 (0·89-0·94), 83% (82-85), 87% (83-91), and 83% (82-84) for classifying tricuspid regurgitation, 0·86 (0·82-0·90), 69% (68-71), 91% (84-95), and 68% (67-70) for classifying pulmonary regurgitation, and 0·85 (0·81-0·89), 86% (85-88), 73% (65-81), and 87% (86-88) for classifying inferior vena cava dilation.The deep learning-based model can accurately classify cardiac functions and valvular heart diseases using information from digital chest radiographs. This model can classify values typically obtained from echocardiography in a fraction of the time, with low system requirements and the potential to be continuously available in areas where echocardiography specialists are scarce or absent.None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
RivedroiteLynn完成签到 ,获得积分10
1秒前
nczpf2010发布了新的文献求助10
2秒前
研友_pnxEqZ发布了新的文献求助10
4秒前
ZYQ发布了新的文献求助10
5秒前
领导范儿应助whl_321采纳,获得10
6秒前
6秒前
橙汁完成签到 ,获得积分10
6秒前
葉要加油完成签到,获得积分10
7秒前
葉要加油发布了新的文献求助10
10秒前
weishen完成签到,获得积分0
12秒前
12秒前
ZYQ完成签到,获得积分10
13秒前
852应助liyanping采纳,获得10
14秒前
15秒前
15秒前
Lanyx完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
Eason完成签到,获得积分10
18秒前
Lanyx发布了新的文献求助10
20秒前
充电宝应助杜琦采纳,获得10
20秒前
Platinum完成签到,获得积分10
20秒前
猪猪侠发布了新的文献求助10
21秒前
22秒前
Felix发布了新的文献求助10
22秒前
anonymous发布了新的文献求助10
22秒前
anasy发布了新的文献求助10
25秒前
疯狂的向日葵完成签到,获得积分10
26秒前
LFH关注了科研通微信公众号
26秒前
大鱼完成签到,获得积分10
27秒前
小乐儿~完成签到,获得积分10
27秒前
quora发布了新的文献求助10
33秒前
丛士乔完成签到,获得积分10
34秒前
34秒前
35秒前
必发文章完成签到,获得积分10
36秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578