Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study

医学 射线照相术 接收机工作特性 二尖瓣反流 放射科 射血分数 反流(循环) 内科学 心脏病学 狭窄 心力衰竭
作者
Daiju Ueda,Toshimasa Matsumoto,Shoichi Ehara,Akira Yamamoto,Shannon L. Walston,Asahiro Ito,Taro Shimono,Masatsugu Shiba,Tohru Takeshita,Daiju Fukuda,Yukio Miki
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (8): e525-e533 被引量:15
标识
DOI:10.1016/s2589-7500(23)00107-3
摘要

Chest radiography is a common and widely available examination. Although cardiovascular structures-such as cardiac shadows and vessels-are visible on chest radiographs, the ability of these radiographs to estimate cardiac function and valvular disease is poorly understood. Using datasets from multiple institutions, we aimed to develop and validate a deep-learning model to simultaneously detect valvular disease and cardiac functions from chest radiographs.In this model development and validation study, we trained, validated, and externally tested a deep learning-based model to classify left ventricular ejection fraction, tricuspid regurgitant velocity, mitral regurgitation, aortic stenosis, aortic regurgitation, mitral stenosis, tricuspid regurgitation, pulmonary regurgitation, and inferior vena cava dilation from chest radiographs. The chest radiographs and associated echocardiograms were collected from four institutions between April 1, 2013, and Dec 31, 2021: we used data from three sites (Osaka Metropolitan University Hospital, Osaka, Japan; Habikino Medical Center, Habikino, Japan; and Morimoto Hospital, Osaka, Japan) for training, validation, and internal testing, and data from one site (Kashiwara Municipal Hospital, Kashiwara, Japan) for external testing. We evaluated the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy.We included 22 551 radiographs associated with 22 551 echocardiograms obtained from 16 946 patients. The external test dataset featured 3311 radiographs from 2617 patients with a mean age of 72 years [SD 15], of whom 49·8% were male and 50·2% were female. The AUCs, accuracy, sensitivity, and specificity for this dataset were 0·92 (95% CI 0·90-0·95), 86% (85-87), 82% (75-87), and 86% (85-88) for classifying the left ventricular ejection fraction at a 40% cutoff, 0·85 (0·83-0·87), 75% (73-76), 83% (80-87), and 73% (71-75) for classifying the tricuspid regurgitant velocity at a 2·8 m/s cutoff, 0·89 (0·86-0·92), 85% (84-86), 82% (76-87), and 85% (84-86) for classifying mitral regurgitation at the none-mild versus moderate-severe cutoff, 0·83 (0·78-0·88), 73% (71-74), 79% (69-87), and 72% (71-74) for classifying aortic stenosis, 0·83 (0·79-0·87), 68% (67-70), 88% (81-92), and 67% (66-69) for classifying aortic regurgitation, 0·86 (0·67-1·00), 90% (89-91), 83% (36-100), and 90% (89-91) for classifying mitral stenosis, 0·92 (0·89-0·94), 83% (82-85), 87% (83-91), and 83% (82-84) for classifying tricuspid regurgitation, 0·86 (0·82-0·90), 69% (68-71), 91% (84-95), and 68% (67-70) for classifying pulmonary regurgitation, and 0·85 (0·81-0·89), 86% (85-88), 73% (65-81), and 87% (86-88) for classifying inferior vena cava dilation.The deep learning-based model can accurately classify cardiac functions and valvular heart diseases using information from digital chest radiographs. This model can classify values typically obtained from echocardiography in a fraction of the time, with low system requirements and the potential to be continuously available in areas where echocardiography specialists are scarce or absent.None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Even发布了新的文献求助10
刚刚
1秒前
1秒前
vumhm发布了新的文献求助50
2秒前
云瑾应助Loris采纳,获得10
2秒前
zzl发布了新的文献求助20
3秒前
Mely0203发布了新的文献求助10
3秒前
BitBong完成签到,获得积分10
5秒前
CodeCraft应助米娅采纳,获得10
5秒前
科目三应助大大大大发采纳,获得10
6秒前
qsy关闭了qsy文献求助
7秒前
糊涂的哑铃完成签到,获得积分10
7秒前
小明完成签到,获得积分20
9秒前
9秒前
ting完成签到,获得积分10
9秒前
上官若男应助怪蜀黍采纳,获得10
9秒前
hanlixuan完成签到 ,获得积分10
12秒前
13秒前
乐观的皮卡丘完成签到,获得积分10
13秒前
14秒前
Husky发布了新的文献求助10
14秒前
zzl完成签到,获得积分10
14秒前
科研通AI2S应助shanks采纳,获得10
15秒前
junjie发布了新的文献求助10
15秒前
study00122完成签到,获得积分10
16秒前
小明发布了新的文献求助10
17秒前
LiRay发布了新的文献求助10
17秒前
17秒前
GankhuyagJavzan完成签到,获得积分10
18秒前
Sunny-simit发布了新的文献求助10
18秒前
19秒前
缥缈万声发布了新的文献求助10
19秒前
飘逸宫苴完成签到,获得积分10
19秒前
动听剑心完成签到 ,获得积分10
20秒前
史道夫给史道夫的求助进行了留言
20秒前
21秒前
haowu发布了新的文献求助80
21秒前
Sucrapipple完成签到,获得积分10
23秒前
顺利的雅绿完成签到,获得积分10
23秒前
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157301
求助须知:如何正确求助?哪些是违规求助? 2808735
关于积分的说明 7878261
捐赠科研通 2467077
什么是DOI,文献DOI怎么找? 1313197
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919