材料科学
氟化锂
阳极
电解质
阴极
枝晶(数学)
化学工程
锂(药物)
电介质
氟化物
电镀(地质)
无机化学
电极
物理化学
光电子学
化学
地质学
内分泌学
工程类
几何学
医学
数学
地球物理学
作者
Ben-hao Kang,Shuang-Feng Li,Jinlong Yang,Zhong‐Ming Li,Yanfei Huang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-07-05
卷期号:17 (14): 14114-14122
被引量:11
标识
DOI:10.1021/acsnano.3c04684
摘要
Conventional polymer/ceramic composite solid-state electrolytes (CPEs) have limitations in inhibiting lithium dendrite growth and fail to meet the contradictory requirements of anodes and cathodes. Herein, an asymmetrical poly(vinylidene fluoride) (PVDF)-PbZrxTi1-xO3 (PZT) CPE was prepared. The CPE incorporates high dielectric PZT nanoparticles, which enrich a dense thin layer on the anode side, making their dipole ends strongly electronegative. This attracts lithium ions (Li+) at the PVDF-PZT interface to transport through dipolar channels and promotes the dissociation of lithium salts into free Li+. Consequently, the CPE enables homogeneous lithium plating and suppresses dendrite growth. Meanwhile, the PVDF-enriched region at the cathode side ensures intermediate contact with positive active materials. Therefore, Li/PVDF-PZT CPE/Li symmetrical cells exhibit a stable cycling performance exceeding 1900 h at 0.1 mA cm-2 at 25 °C, outperforming Li/PVDF solid-state electrolyte/Li cells that fail after 120 h. The LiNi0.8Co0.1Mo0.1O2/PVDF-PZT CPE/Li cells show low interfacial impedances and maintain stable cycling performance for 500 cycles with a capacity retention of 86.2% at 0.5 C and 25 °C. This study introduces a strategy utilizing dielectric ceramics to construct dipolar channels, providing a uniform Li+ transport mechanism and inhibiting dendrite growth.
科研通智能强力驱动
Strongly Powered by AbleSci AI