Advanced machine learning model for predicting Crohn's disease with enhanced ant colony optimization

可解释性 克罗恩病 蚁群优化算法 水准点(测量) 机器学习 人工智能 计算机科学 特征选择 疾病 核(代数) 医学 内科学 数学 大地测量学 地理 组合数学
作者
Xixi He,Huajun Ye,Rui Zhao,Mengmeng Lu,Qiwen Chen,Lishimeng Bao,Tianmin Lv,Qiang Li,Fang Wu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:163: 107216-107216 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107216
摘要

Changes in human lifestyles have led to a dramatic increase in the incidence of Crohn's disease worldwide. Predicting the activity and remission of Crohn's disease has become an urgent research problem. In addition, the influence of each attribute in the test sample on the prediction results and the interpretability of the model still deserves further investigation. Therefore, in this paper, we proposed a wrapper feature selection classification model based on a combination of the improved ant colony optimization algorithm and the kernel extreme learning machine, called bIACOR-KELM-FS. IACOR introduces an evasive strategy and astrophysics strategy to balance the exploration and exploitation phases of the algorithm and enhance its optimization capabilities. The optimization capability of the proposed IACOR was validated on the IEEE CEC2017 benchmark test function. And the prediction was performed on Crohn's disease dataset. The results of the quantitative analysis showed that the prediction accuracy of bIACOR-KELM-FS for predicting the activity and remission of Crohn's disease reached 98.98%. The analysis of important attributes improved the interpretability of the model and provided a reference for the diagnosis of Crohn's disease. Therefore, the proposed model is considered a promising adjunctive diagnostic method for Crohn's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助王多肉采纳,获得10
刚刚
点点关注了科研通微信公众号
刚刚
椰子在长江送礼物应助GC采纳,获得10
刚刚
华仔应助明亮静柏采纳,获得10
1秒前
2秒前
科研通AI5应助王冠儒采纳,获得30
2秒前
传奇3应助迅速的岂愈采纳,获得10
3秒前
5秒前
zxd1999完成签到,获得积分10
6秒前
Uynaux发布了新的文献求助30
6秒前
8秒前
搜集达人应助练习者采纳,获得10
8秒前
8秒前
超级的鞅完成签到,获得积分10
8秒前
8秒前
Bobby发布了新的社区帖子
10秒前
内向的雁开完成签到,获得积分10
10秒前
科目三应助October采纳,获得10
11秒前
li发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
临天下发布了新的文献求助10
14秒前
霍小美完成签到,获得积分10
14秒前
VV发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
科研通AI5应助搞份炸鸡778采纳,获得10
16秒前
16秒前
安和桥北发布了新的文献求助10
17秒前
陈美丽完成签到 ,获得积分10
17秒前
加入书签完成签到,获得积分10
18秒前
烤肠发布了新的文献求助10
18秒前
Q97完成签到,获得积分10
19秒前
19秒前
Yang完成签到,获得积分10
19秒前
19秒前
linda_da发布了新的文献求助10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735290
求助须知:如何正确求助?哪些是违规求助? 3279275
关于积分的说明 10013771
捐赠科研通 2995856
什么是DOI,文献DOI怎么找? 1643736
邀请新用户注册赠送积分活动 781425
科研通“疑难数据库(出版商)”最低求助积分说明 749387