Effect of battery material and operation on dynamic performance of a vanadium redox flow battery under electrolyte imbalance conditions

流动电池 电池(电) 电解质 氧化还原 磷酸钒锂电池 降级(电信) 材料科学 荷电状态 容量损失 电流密度 电气工程 化学工程 无机化学 化学 工程类 电极 热力学 物理 功率(物理) 量子力学 物理化学
作者
Prathak Jienkulsawad,Tossaporn Jirabovornwisut,Yong‐Song Chen,Amornchai Arpornwichanop
出处
期刊:Energy [Elsevier]
卷期号:268: 126708-126708 被引量:14
标识
DOI:10.1016/j.energy.2023.126708
摘要

An electrolyte imbalance in a vanadium redox flow battery (VRFB) is a significant problem that can degrade the performance of VRFB during a long-term operation. The systematic analysis of a VRFB is, therefore, performed to examine the battery performance and capacity degradation caused by an electrolyte imbalance through the use of different electrode materials and membranes, which consider carbon felt structures and their treatment, and cation- and anion-exchange types of membrane. A dynamic model of the VRFB explains the gas evolutions and self-discharge side reactions coupled with the mass balance of the vanadium and proton ions. Investigation of the VRFB performance reveals that the rate of capacity loss resulting from the electrolyte imbalance considerably depends on the material and operating conditions. The variation of the vanadium ions during long-term operation depends on the gassing and self-discharge side reactions. The VRFB using Type 3 electrodes and an AMV membrane provides the highest energy efficiency. The battery operating time is considered a key factor in managing the vanadium variation caused by self-discharge reactions. Current density, temperature, and total vanadium concentration are found to affect the battery capacity degradation rate. A high-capacity degradation rate is observed under low current density, high temperature, and high total vanadium concentration conditions. However, changes in the electrolyte flow rate do not improve the battery capacity during long-term operation because the state of charge of the VRFB decreases due to the electrolyte imbalance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nell发布了新的文献求助10
刚刚
刚刚
1秒前
独特雪碧完成签到,获得积分10
1秒前
1秒前
无花果应助qing采纳,获得10
2秒前
朴实的晓筠完成签到,获得积分10
2秒前
嗷卵犟完成签到,获得积分10
2秒前
zhu完成签到,获得积分10
2秒前
羊咩咩哒发布了新的文献求助10
2秒前
beryl关注了科研通微信公众号
2秒前
305发布了新的文献求助10
3秒前
无花果应助ZinyamHui采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
lytelope发布了新的文献求助10
5秒前
汉堡包应助高兴的向秋采纳,获得10
6秒前
6秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
成就凡双应助科研通管家采纳,获得10
7秒前
7秒前
情怀应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
Yy发布了新的文献求助10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
拼搏剑心完成签到 ,获得积分10
7秒前
元谷雪应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
元谷雪应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589907
求助须知:如何正确求助?哪些是违规求助? 4674376
关于积分的说明 14793616
捐赠科研通 4629217
什么是DOI,文献DOI怎么找? 2532436
邀请新用户注册赠送积分活动 1501101
关于科研通互助平台的介绍 1468527