An adaptive two-stage evolutionary algorithm for large-scale continuous multi-objective optimization

人口 计算机科学 进化算法 分类 差异进化 人工神经网络 趋同(经济学) 阶段(地层学) 数学优化 群体行为 人工智能 算法 数学 古生物学 人口学 经济 社会学 生物 经济增长
作者
Qiuzhen Lin,Jun Li,Songbai Liu,Lijia Ma,Jianqiang Li,Jianyong Chen
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:77: 101235-101235 被引量:1
标识
DOI:10.1016/j.swevo.2023.101235
摘要

This paper proposes an adaptive two-stage large-scale multi-objective evolutionary algorithm, in which a neural network-based accelerating optimizer is designed in the first stage to speed up the population's convergence and a layer-based competitive swarm optimizer is used in the second stage to maintain the population's diversity by spreading the solutions obtained in the first stage. To properly train the neural network in the first stage, the whole population, i.e., the training data, is evenly divided into two subsets with different qualities based on the dominant relationship between solutions. Then, the paired low-quality solutions and high-quality solutions, respectively, act as the input and the expected output when training the neural network. In this way, the potentially directional improvement information of the evolutionary population can be learned by this neural network, which is used to guide the adopted differential evolution in promising search directions. Once the population is detected to be evolutionarily stagnated in the first stage, the second stage will be activated for remedying the population's diversity. Specifically, the promising solutions gained in the first stage are assigned into four layers with different qualities by sequentially implementing reference vectors-guided sorting and shift-based density estimation. After that, the solutions in low-quality layers can learn from that in high-quality layers in the proposed competitive swarm optimizer, which allows the population to evolve further in appreciable directions while increasing its diversity. Experimental studies validate the performance of the proposed evolutionary large-scale optimizer when compared with eight state-of-the-art algorithms in solving two widely tested benchmark suites of large-scale multi-objective optimization problems with decision variables ranging from 100 to 1000 under a limited computational resource.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实山水完成签到 ,获得积分10
5秒前
孙皓然完成签到,获得积分10
6秒前
隐形曼青应助愉快若剑采纳,获得10
9秒前
无花果应助热潮采纳,获得10
9秒前
科研通AI5应助愉快若剑采纳,获得10
9秒前
zx完成签到 ,获得积分10
11秒前
热心不凡完成签到,获得积分10
12秒前
ZJY完成签到 ,获得积分10
13秒前
leid完成签到 ,获得积分10
15秒前
yxq完成签到 ,获得积分10
16秒前
17秒前
俊秀的思山完成签到,获得积分10
19秒前
我爱写论文完成签到 ,获得积分10
21秒前
科研小白完成签到 ,获得积分10
21秒前
热潮发布了新的文献求助10
23秒前
畅畅完成签到 ,获得积分10
26秒前
ceeray23发布了新的文献求助20
30秒前
37秒前
村上春树的摩的完成签到 ,获得积分10
37秒前
天天完成签到 ,获得积分10
41秒前
天明完成签到,获得积分10
46秒前
庄怀逸完成签到 ,获得积分10
47秒前
啊唔发布了新的文献求助10
55秒前
醉熏的伊完成签到,获得积分10
55秒前
pp完成签到 ,获得积分10
1分钟前
笑林完成签到 ,获得积分10
1分钟前
美味小7完成签到 ,获得积分10
1分钟前
君绝完成签到 ,获得积分10
1分钟前
和平使命应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
啊唔完成签到 ,获得积分10
1分钟前
十三完成签到 ,获得积分10
1分钟前
文静灵阳完成签到 ,获得积分10
1分钟前
世界和平完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671320
求助须知:如何正确求助?哪些是违规求助? 3228175
关于积分的说明 9778760
捐赠科研通 2938438
什么是DOI,文献DOI怎么找? 1610028
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736020