已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An adaptive two-stage evolutionary algorithm for large-scale continuous multi-objective optimization

人口 计算机科学 进化算法 分类 差异进化 人工神经网络 趋同(经济学) 阶段(地层学) 数学优化 群体行为 人工智能 算法 数学 古生物学 人口学 经济 社会学 生物 经济增长
作者
Qiuzhen Lin,Jun Li,Songbai Liu,Lijia Ma,Jianqiang Li,Jianyong Chen
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:77: 101235-101235 被引量:1
标识
DOI:10.1016/j.swevo.2023.101235
摘要

This paper proposes an adaptive two-stage large-scale multi-objective evolutionary algorithm, in which a neural network-based accelerating optimizer is designed in the first stage to speed up the population's convergence and a layer-based competitive swarm optimizer is used in the second stage to maintain the population's diversity by spreading the solutions obtained in the first stage. To properly train the neural network in the first stage, the whole population, i.e., the training data, is evenly divided into two subsets with different qualities based on the dominant relationship between solutions. Then, the paired low-quality solutions and high-quality solutions, respectively, act as the input and the expected output when training the neural network. In this way, the potentially directional improvement information of the evolutionary population can be learned by this neural network, which is used to guide the adopted differential evolution in promising search directions. Once the population is detected to be evolutionarily stagnated in the first stage, the second stage will be activated for remedying the population's diversity. Specifically, the promising solutions gained in the first stage are assigned into four layers with different qualities by sequentially implementing reference vectors-guided sorting and shift-based density estimation. After that, the solutions in low-quality layers can learn from that in high-quality layers in the proposed competitive swarm optimizer, which allows the population to evolve further in appreciable directions while increasing its diversity. Experimental studies validate the performance of the proposed evolutionary large-scale optimizer when compared with eight state-of-the-art algorithms in solving two widely tested benchmark suites of large-scale multi-objective optimization problems with decision variables ranging from 100 to 1000 under a limited computational resource.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助SDNUDRUG采纳,获得10
刚刚
尔雅完成签到,获得积分10
1秒前
华仔应助小东子采纳,获得10
1秒前
lu完成签到,获得积分10
2秒前
自由文博完成签到 ,获得积分10
2秒前
3秒前
研友_5Y9X75发布了新的文献求助10
3秒前
蓝胖子发布了新的文献求助30
4秒前
zxy完成签到,获得积分20
5秒前
阿橘发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
7秒前
zzjjyy完成签到,获得积分10
8秒前
东东发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
Raine完成签到,获得积分10
11秒前
二十八化生完成签到 ,获得积分10
11秒前
蓝胖子发布了新的文献求助10
11秒前
乐天儿发布了新的文献求助10
12秒前
13秒前
ChenYX发布了新的文献求助10
13秒前
Raine发布了新的文献求助10
15秒前
卡皮巴拉发布了新的文献求助10
16秒前
李健的小迷弟应助xiaofei666采纳,获得10
18秒前
18秒前
小叔发布了新的文献求助10
18秒前
18秒前
20秒前
帅气小霜发布了新的文献求助10
20秒前
bkagyin应助阿俊1212采纳,获得10
22秒前
likunhi完成签到,获得积分10
23秒前
科研小白发布了新的文献求助10
23秒前
649981108发布了新的文献求助10
24秒前
26秒前
古枂发布了新的文献求助10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229344
求助须知:如何正确求助?哪些是违规求助? 2877046
关于积分的说明 8197662
捐赠科研通 2544371
什么是DOI,文献DOI怎么找? 1374357
科研通“疑难数据库(出版商)”最低求助积分说明 646946
邀请新用户注册赠送积分活动 621742