Artificial intelligence‐assisted determination of available sites for palatal orthodontic mini implants based on palatal thickness through CBCT

软组织 医学 口腔正畸科 牙科 计算机科学 生物医学工程 人工智能 外科
作者
Tianjin Tao,Ke Zou,Ruiyi Jiang,Ketai He,Xian He,Mengyun Zhang,Zhouqiang Wu,Xiaojing Shen,Xuedong Yuan,Wenli Lai,Hu Long
出处
期刊:Orthodontics & Craniofacial Research [Wiley]
卷期号:26 (3): 491-499 被引量:6
标识
DOI:10.1111/ocr.12634
摘要

Abstract Objectives To develop an artificial intelligence (AI) system for automatic palate segmentation through CBCT, and to determine the personalized available sites for palatal mini implants by measuring palatal bone and soft tissue thickness according to the AI‐predicted results. Materials and Methods Eight thousand four hundred target slices (from 70 CBCT scans) from orthodontic patients were collected, labelled by well‐trained orthodontists and randomly divided into two groups: a training set and a test set. After the deep learning process, we evaluated the performance of our deep learning model with the mean Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), sensitivity (SEN), positive predictive value (PPV) and mean thickness percentage error (MTPE). The pixel traversal method was proposed to measure the thickness of palatal bone and soft tissue, and to predict available sites for palatal orthodontic mini implants. Then, an example of available sites for palatal mini implants from the test set was mapped. Results The average DSC, ASSD, SEN, PPV and MTPE for the segmented palatal bone tissue were 0.831%, 1.122%, 0.876%, 0.815% and 6.70%, while that for the palatal soft tissue were 0.741%, 1.091%, 0.861%, 0.695% and 12.2%, respectively. Besides, an example of available sites for palatal mini implants was mapped according to predefined criteria. Conclusions Our AI system showed high accuracy for palatal segmentation and thickness measurement, which is helpful for the determination of available sites and the design of a surgical guide for palatal orthodontic mini implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
未耕完成签到,获得积分10
5秒前
ccm应助大胆蛋挞采纳,获得10
6秒前
搜集达人应助大胆蛋挞采纳,获得10
6秒前
朱英俊完成签到,获得积分10
6秒前
朱英俊发布了新的文献求助10
10秒前
11秒前
科目三应助罗尔与柯西采纳,获得10
11秒前
十一完成签到,获得积分10
13秒前
15秒前
思洁WAIT发布了新的文献求助10
15秒前
shepherd发布了新的文献求助10
16秒前
17秒前
科研通AI2S应助liudy采纳,获得10
19秒前
Edison发布了新的文献求助10
20秒前
20秒前
酷波er应助csy采纳,获得10
20秒前
Jasper应助Passskd采纳,获得10
21秒前
万能图书馆应助广隶采纳,获得10
21秒前
kento应助Harper采纳,获得100
23秒前
LuoYR@SZU发布了新的文献求助10
26秒前
shepherd完成签到,获得积分10
27秒前
27秒前
28秒前
移动马桶完成签到 ,获得积分10
31秒前
8R60d8应助科研通管家采纳,获得10
31秒前
8R60d8应助科研通管家采纳,获得10
31秒前
思源应助科研通管家采纳,获得10
31秒前
毛豆爸爸应助科研通管家采纳,获得20
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
orixero应助科研通管家采纳,获得10
31秒前
思源应助科研通管家采纳,获得10
31秒前
8R60d8应助科研通管家采纳,获得10
31秒前
思源应助科研通管家采纳,获得10
31秒前
31秒前
8R60d8应助科研通管家采纳,获得10
31秒前
嗯哼应助科研通管家采纳,获得20
31秒前
8R60d8应助科研通管家采纳,获得10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161703
求助须知:如何正确求助?哪些是违规求助? 2813001
关于积分的说明 7898208
捐赠科研通 2471974
什么是DOI,文献DOI怎么找? 1316269
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129