Artificial intelligence‐assisted determination of available sites for palatal orthodontic mini implants based on palatal thickness through CBCT

软组织 医学 口腔正畸科 牙科 计算机科学 生物医学工程 人工智能 外科
作者
Tianjin Tao,Ke Zou,Ruiyi Jiang,Ketai He,Xian He,Mengyun Zhang,Zhouqiang Wu,Xiaojing Shen,Xuedong Yuan,Wenli Lai,Hu Long
出处
期刊:Orthodontics & Craniofacial Research [Wiley]
卷期号:26 (3): 491-499 被引量:7
标识
DOI:10.1111/ocr.12634
摘要

To develop an artificial intelligence (AI) system for automatic palate segmentation through CBCT, and to determine the personalized available sites for palatal mini implants by measuring palatal bone and soft tissue thickness according to the AI-predicted results.Eight thousand four hundred target slices (from 70 CBCT scans) from orthodontic patients were collected, labelled by well-trained orthodontists and randomly divided into two groups: a training set and a test set. After the deep learning process, we evaluated the performance of our deep learning model with the mean Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), sensitivity (SEN), positive predictive value (PPV) and mean thickness percentage error (MTPE). The pixel traversal method was proposed to measure the thickness of palatal bone and soft tissue, and to predict available sites for palatal orthodontic mini implants. Then, an example of available sites for palatal mini implants from the test set was mapped.The average DSC, ASSD, SEN, PPV and MTPE for the segmented palatal bone tissue were 0.831%, 1.122%, 0.876%, 0.815% and 6.70%, while that for the palatal soft tissue were 0.741%, 1.091%, 0.861%, 0.695% and 12.2%, respectively. Besides, an example of available sites for palatal mini implants was mapped according to predefined criteria.Our AI system showed high accuracy for palatal segmentation and thickness measurement, which is helpful for the determination of available sites and the design of a surgical guide for palatal orthodontic mini implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜的毛豆完成签到 ,获得积分10
1秒前
华仔应助Eddy采纳,获得10
1秒前
小王发布了新的文献求助10
1秒前
通~发布了新的文献求助10
2秒前
MES发布了新的文献求助10
2秒前
赘婿应助jennifercui采纳,获得10
2秒前
2秒前
3秒前
3秒前
Nifeng完成签到,获得积分10
3秒前
爱听歌的依秋完成签到,获得积分10
3秒前
ufuon发布了新的文献求助10
3秒前
追寻的山晴完成签到,获得积分10
4秒前
4秒前
汉堡包应助otaro采纳,获得10
4秒前
思源应助xfxx采纳,获得10
4秒前
4秒前
铁锤xy完成签到,获得积分10
5秒前
6秒前
6秒前
善学以致用应助qinqin采纳,获得10
7秒前
7秒前
想要礼物的艾斯米拉达完成签到,获得积分10
8秒前
内向秋寒完成签到,获得积分10
8秒前
Alicia完成签到 ,获得积分10
8秒前
9秒前
10秒前
简单的银耳汤完成签到,获得积分10
10秒前
wangbq完成签到 ,获得积分10
10秒前
Moonlight完成签到 ,获得积分10
10秒前
爱撒娇的冰安完成签到,获得积分20
11秒前
zhui发布了新的文献求助10
11秒前
pi完成签到 ,获得积分20
11秒前
发嗲的忆寒完成签到,获得积分10
11秒前
爆米花应助通~采纳,获得10
11秒前
333完成签到 ,获得积分10
12秒前
MES完成签到,获得积分10
12秒前
糊弄学专家完成签到,获得积分10
12秒前
852应助ccyrichard采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794