Computational modeling toward full chain of polypropylene production: From molecular to industrial scale

聚丙烯 比例(比率) 过程(计算) 材料科学 工艺工程 聚合物 放大 计算模型 生化工程 生产(经济) 工艺设计 计算机科学 机械工程 工程类 复合材料 模拟 物理 宏观经济学 经济 操作系统 经典力学 量子力学 过程集成
作者
Wei‐Cheng Yan,Tao Dong,Yin‐Ning Zhou,Zheng‐Hong Luo
出处
期刊:Chemical Engineering Science [Elsevier BV]
卷期号:269: 118448-118448 被引量:26
标识
DOI:10.1016/j.ces.2023.118448
摘要

Since polypropylene was synthesized in 1954, tremendous breakthroughs have been achieved in transferring polypropylene from a discovery in the laboratory to an indispensable industrial product. One of the most difficult issue in polypropylene production is the precise control of the synthesis process to tailor the microstructure and the end-use properties, which needs deep understanding of the quantitative relationships among process, polymer structures and properties. However, semi-empirical correlations and experimental measurements are not able to capture the complex multi-scale characteristics of propylene polymerization process. In recent years, mathematical models have been intensively developed to quantitatively link the microstructure of polymer to final macroscopic properties at multi-scales. This review provides an overview of progress in computational modeling of polypropylene production from the perspectives of science and engineering aspects covering synthesis, structure–property relationship, reactor design, processing, composites, and applications. The developed mathematical models at various scales from molecular scale, particle scale and reactor scale toward plant scale throughout the full chain of production process are elaborated. The coupling strategies of models among different scales will be presented. In addition, model-based determination of quantitative relationships among process, apparatus, structure, and property for polypropylene are fully discussed including the recently developed emerging numerical approaches such as machine learning assisted modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
慧智兰心完成签到,获得积分10
1秒前
易子发布了新的文献求助10
1秒前
2秒前
2秒前
Imp发布了新的文献求助10
3秒前
超帅的天曼完成签到,获得积分10
3秒前
科研通AI6应助RICK采纳,获得10
3秒前
4秒前
Criminology34应助开放的白玉采纳,获得10
4秒前
halona完成签到,获得积分10
4秒前
1+1举报K_Debug求助涉嫌违规
4秒前
5秒前
Ming完成签到,获得积分10
5秒前
邓邓发布了新的文献求助10
6秒前
小翟不宅发布了新的文献求助10
6秒前
柏文鸽关注了科研通微信公众号
7秒前
嘻嘻哈哈应助益生菌小哥采纳,获得10
7秒前
wzj发布了新的文献求助10
7秒前
7秒前
8秒前
酷波er应助fengyeou采纳,获得10
8秒前
8秒前
Lucas应助普外科老白采纳,获得10
8秒前
wangchaofk发布了新的文献求助10
9秒前
八宝粥发布了新的文献求助10
9秒前
陈瞿硕发布了新的文献求助10
9秒前
杨晓沛发布了新的文献求助10
9秒前
9秒前
9秒前
易子完成签到 ,获得积分10
11秒前
win发布了新的文献求助10
11秒前
KC完成签到 ,获得积分10
11秒前
星辰完成签到,获得积分10
11秒前
11秒前
古风欧完成签到,获得积分10
12秒前
12秒前
zer0完成签到,获得积分10
13秒前
方旋发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261106
求助须知:如何正确求助?哪些是违规求助? 4422247
关于积分的说明 13765679
捐赠科研通 4296652
什么是DOI,文献DOI怎么找? 2357478
邀请新用户注册赠送积分活动 1353844
关于科研通互助平台的介绍 1315035