Computational modeling toward full chain of polypropylene production: From molecular to industrial scale

聚丙烯 比例(比率) 过程(计算) 材料科学 工艺工程 聚合物 放大 计算模型 生化工程 生产(经济) 工艺设计 计算机科学 机械工程 工程类 复合材料 模拟 物理 宏观经济学 经济 操作系统 经典力学 量子力学 过程集成
作者
Wei‐Cheng Yan,Tao Dong,Yin‐Ning Zhou,Zheng‐Hong Luo
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:269: 118448-118448 被引量:26
标识
DOI:10.1016/j.ces.2023.118448
摘要

Since polypropylene was synthesized in 1954, tremendous breakthroughs have been achieved in transferring polypropylene from a discovery in the laboratory to an indispensable industrial product. One of the most difficult issue in polypropylene production is the precise control of the synthesis process to tailor the microstructure and the end-use properties, which needs deep understanding of the quantitative relationships among process, polymer structures and properties. However, semi-empirical correlations and experimental measurements are not able to capture the complex multi-scale characteristics of propylene polymerization process. In recent years, mathematical models have been intensively developed to quantitatively link the microstructure of polymer to final macroscopic properties at multi-scales. This review provides an overview of progress in computational modeling of polypropylene production from the perspectives of science and engineering aspects covering synthesis, structure–property relationship, reactor design, processing, composites, and applications. The developed mathematical models at various scales from molecular scale, particle scale and reactor scale toward plant scale throughout the full chain of production process are elaborated. The coupling strategies of models among different scales will be presented. In addition, model-based determination of quantitative relationships among process, apparatus, structure, and property for polypropylene are fully discussed including the recently developed emerging numerical approaches such as machine learning assisted modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助韶邑采纳,获得10
刚刚
起司猫完成签到 ,获得积分10
1秒前
浩然山河完成签到,获得积分10
1秒前
wanci应助悲凉的老虎采纳,获得10
1秒前
破空发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
香蕉觅云应助perdgs采纳,获得10
5秒前
5秒前
无极微光应助jelly采纳,获得20
5秒前
量子星尘发布了新的文献求助10
6秒前
小树发布了新的文献求助10
6秒前
6秒前
清醒完成签到,获得积分10
6秒前
7秒前
7秒前
dd完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
我是老大应助Pengcheng采纳,获得10
9秒前
你说完成签到,获得积分10
9秒前
悲凉的老虎完成签到,获得积分10
10秒前
Edmund发布了新的文献求助10
10秒前
YuenYuen发布了新的文献求助10
11秒前
残剑月发布了新的文献求助10
11秒前
TTYYI发布了新的文献求助10
11秒前
公西白翠完成签到,获得积分10
12秒前
一只秤砣完成签到 ,获得积分10
12秒前
lym97完成签到 ,获得积分10
12秒前
12秒前
perdgs发布了新的文献求助10
13秒前
14秒前
14秒前
小米应助momo采纳,获得10
15秒前
英俊的铭应助痴情的尔岚采纳,获得10
15秒前
YuenYuen完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476