Neural Network With a Preference Sampling Paradigm for Imbalanced Data Classification

欠采样 计算机科学 人工智能 机器学习 人工神经网络 边界判定 修剪 约束(计算机辅助设计) 插值(计算机图形学) 代表(政治) 数据挖掘 数学 支持向量机 运动(物理) 几何学 政治 法学 政治学 农学 生物
作者
Zhan ao Huang,Yongsheng Sang,Yanan Sun,Jiancheng Lv
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9252-9266 被引量:6
标识
DOI:10.1109/tnnls.2022.3231917
摘要

Most data in real life are characterized by imbalance problems. One of the classic models for dealing with imbalanced data is neural networks. However, the data imbalance problem often causes the neural network to display negative class preference behavior. Using an undersampling strategy to reconstruct a balanced dataset is one of the methods to alleviate the data imbalance problem. However, most existing undersampling methods focus more on the data or aim to preserve the overall structural characteristics of the negative class through potential energy estimation, while the problems of gradient inundation and insufficient empirical representation of positive samples have not been well considered. Therefore, a new paradigm for solving the data imbalance problem is proposed. Specifically, to solve the problem of gradient inundation, an informative undersampling strategy is derived from the performance degradation and used to restore the ability of neural networks to work under imbalanced data. In addition, to alleviate the problem of insufficient empirical representation of positive samples, a boundary expansion strategy with linear interpolation and the prediction consistency constraint is considered. We tested the proposed paradigm on 34 imbalanced datasets with imbalance ratios ranging from 16.90 to 100.14. The test results show that our paradigm obtained the best area under the receiver operating characteristic curve (AUC) on 26 datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bjyx发布了新的文献求助10
刚刚
暴躁的夏烟应助123采纳,获得10
刚刚
悦耳的萃发布了新的文献求助10
1秒前
FiFi完成签到 ,获得积分10
1秒前
充电宝应助董胖不很胖采纳,获得10
2秒前
2秒前
2秒前
Akim应助小高同学采纳,获得10
2秒前
2秒前
浮游应助顺心初蓝采纳,获得10
2秒前
卓头OvQ发布了新的文献求助20
3秒前
星辰大海应助liao采纳,获得30
3秒前
曾经二娘发布了新的文献求助10
3秒前
文献完成签到,获得积分20
3秒前
3秒前
ding应助每天不烦恼采纳,获得10
3秒前
4秒前
smile完成签到,获得积分10
4秒前
von发布了新的文献求助10
4秒前
sss发布了新的文献求助10
5秒前
5秒前
7777135发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
NexusExplorer应助曾经二娘采纳,获得10
7秒前
7秒前
分析化学发布了新的文献求助10
7秒前
科研通AI6应助song采纳,获得10
7秒前
cuberblue发布了新的文献求助10
8秒前
9秒前
干净寻冬应助10采纳,获得10
9秒前
科研通AI6应助hhh2018687采纳,获得10
9秒前
脑洞疼应助10采纳,获得10
9秒前
kaking完成签到,获得积分10
10秒前
铁手无情完成签到 ,获得积分10
10秒前
10秒前
LXOYL发布了新的文献求助10
10秒前
mjtsurgery完成签到,获得积分20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603