Neural Network With a Preference Sampling Paradigm for Imbalanced Data Classification

欠采样 计算机科学 人工智能 机器学习 人工神经网络 边界判定 修剪 约束(计算机辅助设计) 插值(计算机图形学) 代表(政治) 数据挖掘 数学 支持向量机 运动(物理) 几何学 政治 法学 政治学 农学 生物
作者
Zhan ao Huang,Yongsheng Sang,Yanan Sun,Jiancheng Lv
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9252-9266 被引量:6
标识
DOI:10.1109/tnnls.2022.3231917
摘要

Most data in real life are characterized by imbalance problems. One of the classic models for dealing with imbalanced data is neural networks. However, the data imbalance problem often causes the neural network to display negative class preference behavior. Using an undersampling strategy to reconstruct a balanced dataset is one of the methods to alleviate the data imbalance problem. However, most existing undersampling methods focus more on the data or aim to preserve the overall structural characteristics of the negative class through potential energy estimation, while the problems of gradient inundation and insufficient empirical representation of positive samples have not been well considered. Therefore, a new paradigm for solving the data imbalance problem is proposed. Specifically, to solve the problem of gradient inundation, an informative undersampling strategy is derived from the performance degradation and used to restore the ability of neural networks to work under imbalanced data. In addition, to alleviate the problem of insufficient empirical representation of positive samples, a boundary expansion strategy with linear interpolation and the prediction consistency constraint is considered. We tested the proposed paradigm on 34 imbalanced datasets with imbalance ratios ranging from 16.90 to 100.14. The test results show that our paradigm obtained the best area under the receiver operating characteristic curve (AUC) on 26 datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧皇完成签到,获得积分20
刚刚
Lucas应助junfeiwang采纳,获得10
刚刚
东方元语发布了新的文献求助10
刚刚
推土机爱学习完成签到 ,获得积分10
刚刚
隐形曼青应助潇湘客采纳,获得10
1秒前
1秒前
1秒前
limi完成签到,获得积分10
1秒前
文刀完成签到,获得积分10
1秒前
pick_up完成签到,获得积分10
2秒前
2秒前
AHR发布了新的文献求助10
3秒前
111发布了新的文献求助30
3秒前
Koma完成签到,获得积分10
3秒前
平家boy发布了新的文献求助10
3秒前
3秒前
limi发布了新的文献求助10
4秒前
一一一应助感动白凝采纳,获得10
4秒前
5秒前
5秒前
Koma发布了新的文献求助10
6秒前
冷静剑成完成签到,获得积分10
6秒前
灰鲸发布了新的文献求助10
6秒前
我爱读文献完成签到,获得积分10
7秒前
7秒前
Zero发布了新的文献求助10
7秒前
背后的映寒完成签到,获得积分10
7秒前
Steven24go发布了新的文献求助10
8秒前
今后应助ZZC10采纳,获得10
8秒前
落山姬完成签到,获得积分10
9秒前
9秒前
9秒前
xiaoxiao完成签到,获得积分10
9秒前
10秒前
111发布了新的文献求助10
10秒前
高皮皮完成签到,获得积分10
10秒前
小青椒应助childe采纳,获得50
10秒前
忐忑的尔容完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531940
求助须知:如何正确求助?哪些是违规求助? 4620674
关于积分的说明 14574347
捐赠科研通 4560401
什么是DOI,文献DOI怎么找? 2498857
邀请新用户注册赠送积分活动 1478757
关于科研通互助平台的介绍 1450090