Neural Network With a Preference Sampling Paradigm for Imbalanced Data Classification

欠采样 计算机科学 人工智能 机器学习 人工神经网络 边界判定 修剪 约束(计算机辅助设计) 插值(计算机图形学) 代表(政治) 数据挖掘 数学 支持向量机 运动(物理) 法学 几何学 政治 生物 政治学 农学
作者
Zhan ao Huang,Yongsheng Sang,Yanan Sun,Jiancheng Lv
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9252-9266 被引量:6
标识
DOI:10.1109/tnnls.2022.3231917
摘要

Most data in real life are characterized by imbalance problems. One of the classic models for dealing with imbalanced data is neural networks. However, the data imbalance problem often causes the neural network to display negative class preference behavior. Using an undersampling strategy to reconstruct a balanced dataset is one of the methods to alleviate the data imbalance problem. However, most existing undersampling methods focus more on the data or aim to preserve the overall structural characteristics of the negative class through potential energy estimation, while the problems of gradient inundation and insufficient empirical representation of positive samples have not been well considered. Therefore, a new paradigm for solving the data imbalance problem is proposed. Specifically, to solve the problem of gradient inundation, an informative undersampling strategy is derived from the performance degradation and used to restore the ability of neural networks to work under imbalanced data. In addition, to alleviate the problem of insufficient empirical representation of positive samples, a boundary expansion strategy with linear interpolation and the prediction consistency constraint is considered. We tested the proposed paradigm on 34 imbalanced datasets with imbalance ratios ranging from 16.90 to 100.14. The test results show that our paradigm obtained the best area under the receiver operating characteristic curve (AUC) on 26 datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spc68应助早安采纳,获得10
3秒前
复成完成签到 ,获得积分10
5秒前
光亮妙之完成签到,获得积分10
5秒前
dd发布了新的文献求助30
5秒前
整齐半青完成签到 ,获得积分10
5秒前
你好完成签到,获得积分10
6秒前
chenanqi完成签到,获得积分10
6秒前
7秒前
yfn完成签到,获得积分10
11秒前
12秒前
16秒前
halo完成签到,获得积分10
17秒前
抑郁小鼠解剖家完成签到,获得积分10
17秒前
忧心的不言完成签到,获得积分10
19秒前
5_羟色胺完成签到,获得积分10
21秒前
12135发布了新的文献求助30
21秒前
wanci应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得80
24秒前
华仔应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得30
24秒前
爱喝酸奶完成签到 ,获得积分10
24秒前
njgi发布了新的文献求助10
25秒前
材小料完成签到,获得积分10
26秒前
FashionBoy应助重要谷雪采纳,获得10
27秒前
爱偷懒的猪完成签到,获得积分10
28秒前
怂宝儿完成签到,获得积分10
29秒前
30秒前
32秒前
水澈天澜发布了新的文献求助20
33秒前
dd发布了新的文献求助10
34秒前
34秒前
俊逸的棒棒糖完成签到 ,获得积分10
35秒前
36秒前
cyn完成签到,获得积分10
36秒前
积极的睫毛完成签到,获得积分10
36秒前
留胡子的秋灵完成签到,获得积分10
37秒前
皛鱼完成签到,获得积分10
38秒前
csx应助DCQ采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521