亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neural Network With a Preference Sampling Paradigm for Imbalanced Data Classification

欠采样 计算机科学 人工智能 机器学习 人工神经网络 边界判定 修剪 约束(计算机辅助设计) 插值(计算机图形学) 代表(政治) 数据挖掘 数学 支持向量机 运动(物理) 法学 几何学 政治 生物 政治学 农学
作者
Zhan ao Huang,Yongsheng Sang,Yanan Sun,Jiancheng Lv
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9252-9266 被引量:6
标识
DOI:10.1109/tnnls.2022.3231917
摘要

Most data in real life are characterized by imbalance problems. One of the classic models for dealing with imbalanced data is neural networks. However, the data imbalance problem often causes the neural network to display negative class preference behavior. Using an undersampling strategy to reconstruct a balanced dataset is one of the methods to alleviate the data imbalance problem. However, most existing undersampling methods focus more on the data or aim to preserve the overall structural characteristics of the negative class through potential energy estimation, while the problems of gradient inundation and insufficient empirical representation of positive samples have not been well considered. Therefore, a new paradigm for solving the data imbalance problem is proposed. Specifically, to solve the problem of gradient inundation, an informative undersampling strategy is derived from the performance degradation and used to restore the ability of neural networks to work under imbalanced data. In addition, to alleviate the problem of insufficient empirical representation of positive samples, a boundary expansion strategy with linear interpolation and the prediction consistency constraint is considered. We tested the proposed paradigm on 34 imbalanced datasets with imbalance ratios ranging from 16.90 to 100.14. The test results show that our paradigm obtained the best area under the receiver operating characteristic curve (AUC) on 26 datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YifanWang应助科研通管家采纳,获得10
7秒前
YifanWang应助科研通管家采纳,获得10
7秒前
30秒前
loopy发布了新的文献求助10
37秒前
纯真的冰蓝完成签到,获得积分10
45秒前
丘比特应助纯真的冰蓝采纳,获得10
49秒前
MchemG举报欢呼洋葱求助涉嫌违规
53秒前
55秒前
森森发布了新的文献求助10
1分钟前
notfound完成签到,获得积分10
1分钟前
1分钟前
现代丹亦发布了新的文献求助10
1分钟前
爆米花应助小李老博采纳,获得10
1分钟前
Atopos发布了新的文献求助30
1分钟前
森森完成签到,获得积分10
1分钟前
2分钟前
科研通AI2S应助不吃洋葱采纳,获得10
2分钟前
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
2分钟前
落后博发布了新的文献求助10
2分钟前
BowieHuang应助森森采纳,获得10
2分钟前
Atopos发布了新的文献求助30
2分钟前
Yuki完成签到 ,获得积分10
3分钟前
3分钟前
善学以致用应助Atopos采纳,获得10
3分钟前
英俊的铭应助诚心山灵采纳,获得10
3分钟前
3分钟前
诚心山灵发布了新的文献求助10
3分钟前
FashionBoy应助Ni采纳,获得10
4分钟前
4分钟前
Ni发布了新的文献求助10
4分钟前
4分钟前
5分钟前
syalonyui完成签到,获得积分10
5分钟前
5分钟前
落后博发布了新的文献求助10
5分钟前
沐兮完成签到 ,获得积分10
5分钟前
852应助清脆靳采纳,获得10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564965
求助须知:如何正确求助?哪些是违规求助? 4649714
关于积分的说明 14689267
捐赠科研通 4591604
什么是DOI,文献DOI怎么找? 2519322
邀请新用户注册赠送积分活动 1491903
关于科研通互助平台的介绍 1462973