Spontaneous wound repair is a complex process that involves overlapping phases of inflammation, proliferation and remodelling, co-ordinated by growth factors and proteases. In extensive wounds such as burns, the repair process would not be achieved in a timely fashion unless grafted. Although spontaneous wound repair has been extensively described, the processes by which wound repair mechanisms mediate graft take are yet to be fully explored. This review describes engraftment stages and summarises current understanding of molecular mechanisms which regulate autologous skin graft healing, with the goal of directing innovation in permanent wound closure with skin substitutes. Graftability and vascularisation of various skin substitutes that are either in the market or in development phase are discussed. In doing so, we cast a spotlight on the paucity of scientific information available as to how skin grafts (both autologous and engineered) heal a wound bed. Better understanding of these processes may assist in developing novel methods of wound management and treatments.