ECG-grained Cardiac Monitoring Using UWB Signals

心跳 窦性心动过缓 计算机科学 窦性心动过速 心动过缓 心率变异性 信号(编程语言) 心电图 心脏监护 人工智能 模式识别(心理学) 医学 心率 心脏病学 内科学 计算机安全 程序设计语言 血压
作者
Zhi Wang,Beihong Jin,Siheng Li,Fusang Zhang,Wenbo Zhang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:6 (4): 1-25
标识
DOI:10.1145/3569503
摘要

With the development of wireless sensing, researchers have proposed many contactless vital sign monitoring systems, which can be used to monitor respiration rates, heart rates, cardiac cycles and etc. However, these vital signs are ones of coarse granularity, so they are less helpful in the diagnosis of cardiovascular diseases (CVDs). Considering that electrocardiogram (ECG) is an important evidence base for the diagnoses of CVDs, we propose to generate ECGs from ultra-wideband (UWB) signals in a contactless manner as a fine-grained cardiac monitoring solution. Specifically, we analyze the properties of UWB signals containing heartbeats and respiration, and design two complementary heartbeat signal restoration methods to perfectly recover heartbeat signal variation. To establish the mapping between the mechanical activity of the heart sensed by UWB devices and the electrical activity of the heart recorded in ECGs, we construct a conditional generative adversarial network to encode the mapping between mechanical activity and electrical activity and propose a contrastive learning strategy to reduce the interference from noise in UWB signals. We build the corresponding cardiac monitoring system named RF-ECG and conduct extensive experiments using about 120,000 heartbeats from more than 40 participants. The experimental results show that the ECGs generated by RF-ECG have good performance in both ECG intervals and morphology compared with the ground truth. Moreover, diseases such as tachycardia/bradycardia, sinus arrhythmia, and premature contractions can be diagnosed from the ECGs generated by our RF-ECG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助谨慎哈密瓜采纳,获得10
1秒前
LaffiteElla完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
11发布了新的文献求助10
1秒前
李爱国应助小叶采纳,获得10
3秒前
weidong发布了新的文献求助30
3秒前
3秒前
4秒前
踏实雪一发布了新的文献求助10
4秒前
好运常在完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
大模型应助言言采纳,获得10
5秒前
6秒前
敢问阁下是何人完成签到,获得积分10
7秒前
张小井完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
sky完成签到,获得积分10
8秒前
光亮语梦完成签到 ,获得积分10
9秒前
9秒前
幸福无声完成签到,获得积分10
9秒前
9秒前
10秒前
酷波er应助渴望者采纳,获得10
10秒前
10秒前
11秒前
碧蓝丹烟发布了新的文献求助10
11秒前
洋葱头小姐完成签到 ,获得积分10
11秒前
Lucas应助euphoria采纳,获得10
11秒前
伶俐草丛发布了新的文献求助10
13秒前
医只兔完成签到,获得积分10
13秒前
oneday完成签到,获得积分10
13秒前
13秒前
13秒前
lin发布了新的文献求助10
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442722
求助须知:如何正确求助?哪些是违规求助? 4552855
关于积分的说明 14239277
捐赠科研通 4474129
什么是DOI,文献DOI怎么找? 2451921
邀请新用户注册赠送积分活动 1442839
关于科研通互助平台的介绍 1418593