ECG-grained Cardiac Monitoring Using UWB Signals

心跳 窦性心动过缓 计算机科学 窦性心动过速 心动过缓 心率变异性 信号(编程语言) 心电图 心脏监护 人工智能 模式识别(心理学) 医学 心率 心脏病学 内科学 计算机安全 程序设计语言 血压
作者
Zhi Wang,Beihong Jin,Siheng Li,Fusang Zhang,Wenbo Zhang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:6 (4): 1-25
标识
DOI:10.1145/3569503
摘要

With the development of wireless sensing, researchers have proposed many contactless vital sign monitoring systems, which can be used to monitor respiration rates, heart rates, cardiac cycles and etc. However, these vital signs are ones of coarse granularity, so they are less helpful in the diagnosis of cardiovascular diseases (CVDs). Considering that electrocardiogram (ECG) is an important evidence base for the diagnoses of CVDs, we propose to generate ECGs from ultra-wideband (UWB) signals in a contactless manner as a fine-grained cardiac monitoring solution. Specifically, we analyze the properties of UWB signals containing heartbeats and respiration, and design two complementary heartbeat signal restoration methods to perfectly recover heartbeat signal variation. To establish the mapping between the mechanical activity of the heart sensed by UWB devices and the electrical activity of the heart recorded in ECGs, we construct a conditional generative adversarial network to encode the mapping between mechanical activity and electrical activity and propose a contrastive learning strategy to reduce the interference from noise in UWB signals. We build the corresponding cardiac monitoring system named RF-ECG and conduct extensive experiments using about 120,000 heartbeats from more than 40 participants. The experimental results show that the ECGs generated by RF-ECG have good performance in both ECG intervals and morphology compared with the ground truth. Moreover, diseases such as tachycardia/bradycardia, sinus arrhythmia, and premature contractions can be diagnosed from the ECGs generated by our RF-ECG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JIANGSHUI完成签到,获得积分10
1秒前
万金油完成签到 ,获得积分10
1秒前
老王爱学习完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
Kia发布了新的文献求助30
4秒前
GUKGO完成签到,获得积分10
5秒前
limerence完成签到,获得积分10
5秒前
汉堡包应助风轩轩采纳,获得10
5秒前
林深时见鹿完成签到,获得积分10
5秒前
5秒前
13发布了新的文献求助30
6秒前
6秒前
orixero应助清爽朋友采纳,获得10
6秒前
凡人完成签到,获得积分10
7秒前
爆米花应助坚强水杯采纳,获得100
7秒前
shenyanlei发布了新的文献求助10
7秒前
欢喜大地发布了新的文献求助10
7秒前
Spencer发布了新的文献求助30
7秒前
随便发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
DTS发布了新的文献求助10
10秒前
10秒前
1851611453完成签到 ,获得积分10
11秒前
刘丰铭发布了新的文献求助10
11秒前
SciGPT应助jhonnyhuang采纳,获得10
11秒前
11秒前
13秒前
sunshine完成签到,获得积分10
13秒前
风清扬发布了新的文献求助10
13秒前
科研通AI6应助结实的栾采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802