清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of unsupervised deep learning to image segmentation and in-situ contact angle measurements in a CO2-water-rock system

人工智能 计算机科学 分割 模式识别(心理学) 无监督学习 聚类分析 基本事实 图像分割 深度学习 像素 人工神经网络 特征(语言学) 计算机视觉 语言学 哲学
作者
Hongsheng Wang,Laura E. Dalton,Ruichang Guo,James E. McClure,Dustin Crandall,Cheng Chen
出处
期刊:Advances in Water Resources [Elsevier]
卷期号:173: 104385-104385 被引量:5
标识
DOI:10.1016/j.advwatres.2023.104385
摘要

Rock surface wettability is a critical property that regulates multiphase flows in porous media, which can be quantified using the surface contact angle (CA). X-ray micro-computed tomography (μCT) provides an effective approach to in-situ measurements of surface CAs. However, the CA measurement accuracy depends significantly on the quality of CT image segmentation, which is the clustering of CT pixels into separate phases. Inspired by this, we developed a deep learning (DL)-based CA measurement workflow. Motivated by the recent tremendous progress in unsupervised learning techniques and aiming to avoid expensive manual data annotations, an unsupervised DL pipeline for CT image segmentation was proposed and implemented, which includes unsupervised model training and post-processing. The unsupervised model training was driven by a novel loss function constrained with feature similarity and spatial continuity and implemented by iterative forward and backward paths; the former clustered the pixel-wise feature vectors extracted by convolution neural networks, whereas the latter updated the parameters using gradient descent. An over-segmentation strategy was adopted for model training. The post-processing steps based on agglomerative hierarchical clustering (AHC) were implemented to further merge the over-segmented model output to the desired cluster number, which is intended to improve the efficiency of image segmentation. The developed unsupervised DL pipeline was compared with other commonly-used image segmentation methods using pixel-wise and physics-based evaluation metrics on a synthetic raw-image dataset, which had a known ground truth. The unsupervised DL pipeline showed the best performance. Next, the segmented images were input to an automatic CA measurement tool, and the results were validated by comparisons with manual measurements. The CA values from the manual and automatic measurements showed similar distributions and statistical properties. The automatic measurement demonstrated a wider spectrum because of the much larger number of measurement data points. The primary novelty of the unsupervised DL pipeline developed in this study lies in the novel loss function and the over-segmentation strategy associated with AHC post-processing. The workflow has been proven an efficient tool for pore-scale wettability characterization, which has a wide range of applications in fundamental studies of multiphase flows in natural porous media, which have critical implications to geological carbon sequestration, hydrocarbon energy recovery, and contaminant transport in groundwater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sci_zt完成签到 ,获得积分10
7秒前
naczx完成签到,获得积分0
9秒前
xjwang发布了新的文献求助10
9秒前
31秒前
cocolu应助会笑的蜗牛采纳,获得10
34秒前
吉吉宝贝发布了新的文献求助10
37秒前
清欢完成签到,获得积分20
45秒前
吡咯爱成环应助倪倪采纳,获得10
50秒前
7788完成签到,获得积分10
50秒前
十六应助会笑的蜗牛采纳,获得10
53秒前
Tanyang应助会笑的蜗牛采纳,获得10
1分钟前
天天快乐应助会笑的蜗牛采纳,获得10
1分钟前
嘟嘟嘟嘟完成签到 ,获得积分10
1分钟前
Jasper应助会笑的蜗牛采纳,获得10
1分钟前
学术小垃圾完成签到,获得积分10
1分钟前
张小陈完成签到 ,获得积分10
1分钟前
爆米花应助会笑的蜗牛采纳,获得10
2分钟前
黑粉头头完成签到,获得积分10
2分钟前
迈克老狼完成签到 ,获得积分10
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
余呀余完成签到 ,获得积分10
2分钟前
cocolu应助会笑的蜗牛采纳,获得10
2分钟前
2分钟前
cocolu应助会笑的蜗牛采纳,获得10
2分钟前
zzhui完成签到,获得积分10
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
cocolu应助会笑的蜗牛采纳,获得10
2分钟前
xhemers发布了新的文献求助10
2分钟前
xhemers完成签到,获得积分10
3分钟前
唯梦完成签到 ,获得积分10
3分钟前
Singularity应助会笑的蜗牛采纳,获得10
3分钟前
月军完成签到 ,获得积分10
3分钟前
3分钟前
CC完成签到,获得积分10
3分钟前
侠客完成签到 ,获得积分10
3分钟前
qq完成签到 ,获得积分10
3分钟前
方羽应助科研通管家采纳,获得100
4分钟前
落忆完成签到 ,获得积分10
4分钟前
huiluowork完成签到 ,获得积分10
4分钟前
大个应助饱满若灵采纳,获得10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497550
求助须知:如何正确求助?哪些是违规求助? 3082074
关于积分的说明 9169995
捐赠科研通 2775219
什么是DOI,文献DOI怎么找? 1522868
邀请新用户注册赠送积分活动 706270
科研通“疑难数据库(出版商)”最低求助积分说明 703346