Automatic diagnosis of ureteral stone and degree of hydronephrosis with proposed convolutional neural network, RelieF , and gradient‐weighted class activation mapping based deep hybrid model

肾积水 计算机科学 人工智能 卷积神经网络 支持向量机 模式识别(心理学) 特征提取 特征(语言学) 分类器(UML) 医学 泌尿系统 语言学 内分泌学 哲学
作者
Muhammet Serdar Buğday,Mehmet Akçiçek,Harun Bingol,Muhammed Yıldırım
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:33 (2): 760-769 被引量:1
标识
DOI:10.1002/ima.22847
摘要

Abstract Urinary system stone disease is a common disease group all over the world. Ureteral stones constitute 20% of all urinary system stones. Ureteral stones are important because they can cause hydronephrosis and related renal parenchymal damage in the kidneys. In the study, a hybrid model was developed to detect hydronephrosis and ureteral stones from kidney images. In the developed model, heat maps of the original images were obtained by using gradient‐weighted class activation mapping (Grad‐CAM) technology. Then, feature maps were extracted from both the original and heatmap datasets using the Efficientnetb0 architecture. Extracted feature maps were concatenated using a multimodal fusion technique. In this way, different features of an image are obtained. This has a positive effect on the performance of the model. The Relief dimension reduction technique was used to eliminate unnecessary features in the obtained feature map so that the proposed model can work faster and more effectively. Finally, the optimized feature map is classified in the support vector machine (SVM) classifier. To compare the performance of the proposed hybrid model, results were obtained with 8 state‐of‐the‐art models accepted in the literature. Among these models, the highest accuracy value was achieved in the Efficientnetb0 architecture with 67.98%, whereas the accuracy of the proposed hybrid model was 91.1%. This value indicates that the proposed model can be used for HUN diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祁九发布了新的文献求助10
1秒前
追寻羿发布了新的文献求助10
2秒前
2秒前
borg完成签到,获得积分10
3秒前
哈哈哈发布了新的文献求助10
5秒前
5秒前
nancy wang发布了新的文献求助10
7秒前
纯真的诗兰完成签到,获得积分10
7秒前
8秒前
10秒前
漂亮幻莲发布了新的文献求助10
11秒前
xwz626发布了新的文献求助10
12秒前
ZZZ发布了新的文献求助10
13秒前
16秒前
17秒前
郎飞结完成签到,获得积分10
19秒前
彻底疯狂完成签到 ,获得积分10
20秒前
Lyhhh发布了新的文献求助10
21秒前
123完成签到 ,获得积分20
23秒前
竹筏过海应助rrrrrrry采纳,获得30
24秒前
Ava应助ayayaya采纳,获得10
24秒前
传奇3应助miles采纳,获得10
26秒前
29秒前
30秒前
嘿哈发布了新的文献求助10
32秒前
小黑子完成签到,获得积分10
33秒前
领导范儿应助eternity136采纳,获得10
34秒前
bao应助瘦瘦采纳,获得10
34秒前
35秒前
35秒前
FashionBoy应助wangwangwang采纳,获得10
35秒前
35秒前
Doc_Ocean完成签到,获得积分10
35秒前
36秒前
个性的紫菜应助石烟祝采纳,获得30
37秒前
38秒前
嘿哈完成签到,获得积分10
41秒前
miles发布了新的文献求助10
41秒前
zzc发布了新的文献求助10
42秒前
佳轩肘子完成签到,获得积分10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309840
求助须知:如何正确求助?哪些是违规求助? 2943043
关于积分的说明 8512388
捐赠科研通 2618126
什么是DOI,文献DOI怎么找? 1430822
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649478