SSCT-Net: A Semisupervised Circular Teacher Network for Defect Detection With Limited Labeled Multiview MFL Samples

人工智能 特征提取 模式识别(心理学) 漏磁 特征(语言学) 计算机科学 嵌入 深度学习 工程类 电磁线圈 语言学 电气工程 哲学
作者
Xiangkai Shen,Jinhai Liu,Jiayue Sun,Lin Jiang,He Zhao,Huaguang Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (10): 10114-10124 被引量:8
标识
DOI:10.1109/tii.2022.3232764
摘要

Deep learning methods have demonstrated promising performance in magnetic flux leakage (MFL) defect detection under adequate amounts of labeled samples. However, in industrial occasions, obtaining adequate amounts of labeled samples is time-consuming and expensive, and applying only limited labeled samples can lead to unsatisfactory defect detection accuracy. To address the above issues, a defect detection method named semisupervised circular teacher network (SSCT-Net) is proposed in this article. First, a parallel feature extraction network with hybrid attention is proposed in SSCT-Net so that the useful features of multiview MFL signals can be extracted simultaneously. Second, semisupervised circular learning is proposed for the first time. In semisupervised circular learning, a distinguishable feature embedding space is constructed, and two structurally identical deep networks cosupervise and collaborate through the proposed consistent circular strategy so that the decision bias of unlabeled samples can be reduced. Finally, the trained model is applied for defect detection in practice. The proposed method can establish a potential connection between multiview MFL signals and fully utilize labeled and unlabeled MFL signals. The experiments in simulations and real-world applications demonstrate that SSCT-Net can reach 92% detection accuracy with only 20% labeled samples, which is more effective than the state-of-the-art methods and leads to a promising practical utility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sdl发布了新的文献求助10
1秒前
gesg发布了新的文献求助10
1秒前
1秒前
昏睡的蟠桃应助小楼采纳,获得200
2秒前
清爽乐菱应助skycrygg采纳,获得20
2秒前
2秒前
wang发布了新的文献求助10
2秒前
4秒前
雪花精灵完成签到,获得积分10
4秒前
木又权发布了新的文献求助10
5秒前
5秒前
隐形曼青应助高兴的海亦采纳,获得10
5秒前
nine2652发布了新的文献求助10
5秒前
彭于彦祖应助高兴的海亦采纳,获得30
5秒前
廖晨曦发布了新的文献求助10
5秒前
卡卡西应助高兴的海亦采纳,获得30
6秒前
6秒前
Hello应助高兴的海亦采纳,获得30
6秒前
6秒前
彭于彦祖应助高兴的海亦采纳,获得30
6秒前
小二郎应助高兴的海亦采纳,获得10
6秒前
6秒前
小二郎应助gaoyi12356采纳,获得10
6秒前
娃哈哈完成签到,获得积分10
7秒前
库库林白夜关注了科研通微信公众号
7秒前
蓝色斑马完成签到,获得积分10
8秒前
网名还没想好完成签到,获得积分10
8秒前
8秒前
肥鹏发布了新的文献求助10
9秒前
qq大魔王发布了新的文献求助10
10秒前
Keira发布了新的文献求助20
11秒前
重要从灵完成签到,获得积分10
11秒前
12秒前
知昂张完成签到,获得积分20
12秒前
111驳回了Lucas应助
13秒前
Yynnn完成签到 ,获得积分10
13秒前
疯狂的师发布了新的文献求助10
13秒前
14秒前
文献求助完成签到,获得积分10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987