SSCT-Net: A Semisupervised Circular Teacher Network for Defect Detection With Limited Labeled Multiview MFL Samples

人工智能 特征提取 模式识别(心理学) 漏磁 特征(语言学) 计算机科学 嵌入 深度学习 工程类 电磁线圈 语言学 电气工程 哲学
作者
Xiangkai Shen,Jinhai Liu,Jiayue Sun,Lin Jiang,He Zhao,Huaguang Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (10): 10114-10124 被引量:8
标识
DOI:10.1109/tii.2022.3232764
摘要

Deep learning methods have demonstrated promising performance in magnetic flux leakage (MFL) defect detection under adequate amounts of labeled samples. However, in industrial occasions, obtaining adequate amounts of labeled samples is time-consuming and expensive, and applying only limited labeled samples can lead to unsatisfactory defect detection accuracy. To address the above issues, a defect detection method named semisupervised circular teacher network (SSCT-Net) is proposed in this article. First, a parallel feature extraction network with hybrid attention is proposed in SSCT-Net so that the useful features of multiview MFL signals can be extracted simultaneously. Second, semisupervised circular learning is proposed for the first time. In semisupervised circular learning, a distinguishable feature embedding space is constructed, and two structurally identical deep networks cosupervise and collaborate through the proposed consistent circular strategy so that the decision bias of unlabeled samples can be reduced. Finally, the trained model is applied for defect detection in practice. The proposed method can establish a potential connection between multiview MFL signals and fully utilize labeled and unlabeled MFL signals. The experiments in simulations and real-world applications demonstrate that SSCT-Net can reach 92% detection accuracy with only 20% labeled samples, which is more effective than the state-of-the-art methods and leads to a promising practical utility of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈麦关注了科研通微信公众号
刚刚
淡然冬灵完成签到,获得积分10
刚刚
科研助理发布了新的文献求助10
1秒前
tangli完成签到 ,获得积分10
3秒前
CipherSage应助宜菏采纳,获得10
5秒前
jason完成签到 ,获得积分10
5秒前
恋恋青葡萄完成签到,获得积分10
6秒前
9秒前
ho完成签到,获得积分10
12秒前
LingYun完成签到,获得积分10
14秒前
yznfly应助ho采纳,获得200
17秒前
栖梧砚客完成签到 ,获得积分10
18秒前
刘歌完成签到 ,获得积分10
18秒前
Mercury完成签到 ,获得积分10
19秒前
贾方硕完成签到,获得积分10
19秒前
888完成签到,获得积分10
23秒前
Lincoln完成签到,获得积分10
24秒前
HCLonely完成签到,获得积分0
27秒前
科研通AI2S应助Muncy采纳,获得20
31秒前
量子星尘发布了新的文献求助10
33秒前
独特的秋完成签到 ,获得积分10
33秒前
吉吉国王完成签到 ,获得积分10
34秒前
36秒前
13633501455完成签到 ,获得积分10
37秒前
哎呀哎呀呀完成签到,获得积分10
38秒前
科研助理发布了新的文献求助10
39秒前
你好纠结伦完成签到,获得积分10
39秒前
wll1091完成签到 ,获得积分10
41秒前
陈麦发布了新的文献求助10
41秒前
Joy完成签到,获得积分10
42秒前
默默平文完成签到,获得积分10
42秒前
43秒前
火蓝完成签到 ,获得积分10
44秒前
laber完成签到,获得积分0
46秒前
minrui发布了新的文献求助10
47秒前
阿苗完成签到 ,获得积分10
51秒前
cx完成签到,获得积分10
54秒前
yyani完成签到,获得积分10
56秒前
三脸茫然完成签到 ,获得积分0
56秒前
彦凝毓完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086