SSCT-Net: A Semisupervised Circular Teacher Network for Defect Detection With Limited Labeled Multiview MFL Samples

人工智能 特征提取 模式识别(心理学) 漏磁 特征(语言学) 计算机科学 嵌入 深度学习 工程类 电磁线圈 语言学 电气工程 哲学
作者
Xiangkai Shen,Jinhai Liu,Jiayue Sun,Lin Jiang,He Zhao,Huaguang Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (10): 10114-10124 被引量:8
标识
DOI:10.1109/tii.2022.3232764
摘要

Deep learning methods have demonstrated promising performance in magnetic flux leakage (MFL) defect detection under adequate amounts of labeled samples. However, in industrial occasions, obtaining adequate amounts of labeled samples is time-consuming and expensive, and applying only limited labeled samples can lead to unsatisfactory defect detection accuracy. To address the above issues, a defect detection method named semisupervised circular teacher network (SSCT-Net) is proposed in this article. First, a parallel feature extraction network with hybrid attention is proposed in SSCT-Net so that the useful features of multiview MFL signals can be extracted simultaneously. Second, semisupervised circular learning is proposed for the first time. In semisupervised circular learning, a distinguishable feature embedding space is constructed, and two structurally identical deep networks cosupervise and collaborate through the proposed consistent circular strategy so that the decision bias of unlabeled samples can be reduced. Finally, the trained model is applied for defect detection in practice. The proposed method can establish a potential connection between multiview MFL signals and fully utilize labeled and unlabeled MFL signals. The experiments in simulations and real-world applications demonstrate that SSCT-Net can reach 92% detection accuracy with only 20% labeled samples, which is more effective than the state-of-the-art methods and leads to a promising practical utility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pura卷卷发布了新的文献求助20
1秒前
申哥完成签到,获得积分10
2秒前
寇kk发布了新的文献求助10
2秒前
所所应助nunu采纳,获得10
2秒前
PaoPao完成签到,获得积分10
3秒前
劳资懒得起网名完成签到,获得积分10
3秒前
高荣欣完成签到,获得积分10
3秒前
xslj发布了新的文献求助10
3秒前
复杂的可冥完成签到,获得积分20
4秒前
xuanxuan完成签到 ,获得积分10
4秒前
薛佳琦发布了新的文献求助10
5秒前
塔莉娅发布了新的文献求助10
5秒前
6秒前
vae发布了新的文献求助10
6秒前
丘比特应助jinjin采纳,获得10
6秒前
6秒前
CHEN完成签到,获得积分10
6秒前
7秒前
richwu完成签到,获得积分10
7秒前
李健的小迷弟应助大方嵩采纳,获得10
8秒前
8秒前
科目三应助最初采纳,获得10
8秒前
9秒前
Jasper应助democienceek采纳,获得10
10秒前
10秒前
嘉佳伽完成签到 ,获得积分10
10秒前
10秒前
marketing完成签到,获得积分20
11秒前
11秒前
zx发布了新的文献求助10
11秒前
柏不斜发布了新的文献求助10
12秒前
茧茧完成签到 ,获得积分10
13秒前
细辛发布了新的文献求助10
13秒前
jiujiujiujiu完成签到,获得积分10
13秒前
健忘的寄容完成签到,获得积分10
13秒前
须臾徐发布了新的文献求助30
14秒前
14秒前
15秒前
15秒前
大个应助marketing采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5168332
求助须知:如何正确求助?哪些是违规求助? 4360094
关于积分的说明 13575036
捐赠科研通 4206782
什么是DOI,文献DOI怎么找? 2307094
邀请新用户注册赠送积分活动 1306721
关于科研通互助平台的介绍 1253377