生物炭
生物利用度
吸附
吸附
环境化学
遗传算法
化学
环境修复
分馏
热解
污染
色谱法
生物
有机化学
生态学
生物信息学
作者
Yuxin Ke,Fuxiang Zhang,Zulin Zhang,Rupert Hough,Qiang Fu,Yifan Li,Song Cui
标识
DOI:10.1016/j.scitotenv.2023.161593
摘要
As a passivation material for heavy metals in-situ remediation, biochar (BC) has often been expected to maintain long-term adsorption performance for target pollutants. There is still lack of consensus about the impact of aging processes on biochar properties, particularly with respect to its long-term sorption performance. In this study, the changes to immobilization mechanisms as well as the speciation distribution of Cd(II) triggered by combined aging simulation (dry-wet, freeze-thaw cycle and oxidation treatment) on BC prepared under three levels of pyrolysis temperatures (300, 500 and 700 °C) were investigated. The results showed significant inhibition of aging on adsorption performance with the adsorptive capacity of BC300, BC500 and BC700 for Cd(II) decreased by 31.12 %, 50.63 % and 14.94 %, respectively. However, sequential extraction results indicated little influence of the aging process on the relative fractionation of Cd(II) speciation. The distribution of readily bioavailable, potentially bioavailable and non-bioavailable fractions of Cd(II) on BC showed only minimal changes post-aging. Overall, there was less Cd(II) sorption following aging, but the fractional availability (in relative terms) remained the same. Compared with 300 and 700 °C, the biochar prepared under 500 °C accounted the highest fraction of non-bioavailable Cd(II) (67.23 % of BC500, 59.17 % of Aged-500), and thus showed most promising for Cd(II) immobilization. This study has important practical significance for the long-term application of biochar in real environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI