Semi-supervised Domain Adaptation via Joint Transductive and Inductive Subspace Learning

计算机科学 子空间拓扑 人工智能 接头(建筑物) 域适应 机器学习 转导(生物物理学) 领域(数学分析) 模式识别(心理学) 适应(眼睛) 数学 生物化学 分类器(UML) 光学 物理 工程类 数学分析 建筑工程 化学
作者
Hao Luo,Zhiqiang Tian,Kaibing Zhang,Guofa Wang,Shaoyi Du
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tmm.2024.3407696
摘要

Most existing shallow semi-supervised domain adaptation (SSDA) algorithms are based mainly on the framework adopting the maximum mean discrepancy (MMD) criterion, which is unstable and easily becomes stuck in a poor local minimum. Moreover, existing SSDA methods typically assume that the influence of the source domain is equivalent to that of the target domain, which is unreasonable and severely limits their performance. To address such drawbacks, we propose a novel SSDA framework derived from simple least squares regression (LSR) in a joint transductive and inductive learning paradigm, named transferable LSR (TLSR). Specifically, TLSR first learns domain-shared features using transfer component analysis (TCA) in a transductive paradigm. Then, TLSR augments the TCA features into the raw sample feature, formulating them into a block-diagonal matrix and training them in an inductive learning paradigm. This joint transductive and inductive learning paradigm helps alleviate the negative impacts of the MMD criterion of TCA but preserves the useful learned domain-shared knowledge. Moreover, the proposed block-diagonal input structure helps to separate the learned projections into independent domain-specific parts. Owing to the block-diagonal input structure, the influence of each domain can be reweighted, leading to significant improvements in performance. The experimental results demonstrate that the proposed TLSR outperforms the other shallow state-of-the-art competitors in 68 out of 90 cross-domain tasks. The source code of TLSR is available at: https://github.com/Evelhz/TLSR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定芷烟完成签到,获得积分10
刚刚
刚刚
小晋完成签到,获得积分10
刚刚
xingxing发布了新的文献求助10
刚刚
XXaaxxxx完成签到,获得积分20
1秒前
xiasijian完成签到,获得积分10
1秒前
愤怒的店员完成签到,获得积分10
1秒前
YY发布了新的文献求助10
1秒前
2秒前
2秒前
A7发布了新的文献求助10
2秒前
2秒前
3秒前
聪明大王完成签到 ,获得积分10
3秒前
张丫丫发布了新的文献求助10
3秒前
天天快乐应助Henry采纳,获得10
3秒前
车厘子发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
6秒前
8秒前
解博童完成签到,获得积分10
8秒前
芭乐侠完成签到,获得积分10
8秒前
copper发布了新的文献求助10
9秒前
9秒前
wanci应助热心嫣然采纳,获得10
9秒前
zys2001mezy应助ZZZ采纳,获得20
9秒前
赘婿应助骆驼采纳,获得100
9秒前
zyy关闭了zyy文献求助
10秒前
YY完成签到,获得积分10
10秒前
10秒前
他克莫司完成签到,获得积分10
10秒前
APS完成签到,获得积分10
10秒前
汉堡包应助lumm采纳,获得10
10秒前
11秒前
大飞飞完成签到,获得积分10
11秒前
ddd发布了新的文献求助10
11秒前
11秒前
成就棒棒糖完成签到,获得积分20
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198