清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic curriculum determination for deep reinforcement learning in reconfigurable robots.

强化学习 计算机科学 机器人 课程 人工智能 机器学习 人机交互 心理学 教育学
作者
Zachi Karni,Or Simhon,David Zarrouk,Sigal Berman
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 78342-78353 被引量:1
标识
DOI:10.1109/access.2024.3406768
摘要

Deep reinforcement learning (DRL) is a prevalent learning method in robotics. DRL is commonly applied in real-world scenarios such as learning motion behavior in rough terrain. However, the lengthy learning epochs reduce DRL practicability in many such environments. Curriculum learning can significantly enhance the efficiency of DRL, but establishing a curriculum is challenging, partly because it can be difficult to assess the operation complexity for each task. Determining operation complexity can be especially difficult for reconfigurable search and rescue robots. We present a method for learning based on an automatically established curriculum tuned to the robot's perspective. The method is especially suitable for outdoor environments with multiple obstacle variants, e.g., environments encountered in search and rescue missions. After an initial learning stage, the behavior of a robot when overcoming each obstacle variant is characterized using Gaussian mixture models (GMMs). Hellinger's distance between the GMMs is computed and used for hierarchically clustering the variants. The curriculum is determined based on the formed clusters and the average success rate in each cluster. The method was implemented on RSTAR, a highly maneuverable and reconfigurable field robot that can overcome a variety of obstacles. Learning using the automatically determined curriculum was compared to learning without a curriculum in a simulation with three obstacle types: a narrow channel, a low entrance, and a step. The results show that learning using the automatically determined curriculum enables overcoming obstacles faster and with higher success rates than learning without a curriculum for all obstacles, especially for complex obstacle variants. The developed method offers a promising method for learning motion behavior in real-word scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
震动的听枫完成签到,获得积分10
3秒前
林利芳完成签到 ,获得积分10
4秒前
Hello应助月亮采纳,获得10
5秒前
明朗完成签到 ,获得积分10
13秒前
大熊完成签到 ,获得积分20
15秒前
堇笙vv完成签到,获得积分0
17秒前
20秒前
月亮发布了新的文献求助10
26秒前
打打应助希勤采纳,获得10
29秒前
42秒前
希勤发布了新的文献求助10
47秒前
wodetaiyangLLL完成签到 ,获得积分10
52秒前
月亮完成签到,获得积分10
54秒前
54秒前
Jenny完成签到,获得积分10
56秒前
天天快乐应助月亮采纳,获得10
58秒前
Jenny发布了新的文献求助200
1分钟前
CC完成签到,获得积分0
1分钟前
ghan完成签到 ,获得积分10
1分钟前
yujie完成签到 ,获得积分10
1分钟前
cai白白完成签到,获得积分0
1分钟前
1分钟前
月亮发布了新的文献求助10
2分钟前
2分钟前
iberis完成签到 ,获得积分10
2分钟前
春华秋实发布了新的文献求助30
2分钟前
魏白晴完成签到,获得积分10
2分钟前
情怀应助佳哥闯天下采纳,获得10
2分钟前
17852573662完成签到,获得积分10
3分钟前
3分钟前
3分钟前
诚心的水杯完成签到 ,获得积分10
3分钟前
3分钟前
光亮的自行车完成签到 ,获得积分10
3分钟前
春华秋实完成签到,获得积分10
3分钟前
renxuda发布了新的文献求助10
3分钟前
sunny完成签到 ,获得积分10
3分钟前
无辜的行云完成签到 ,获得积分0
4分钟前
jerry完成签到 ,获得积分10
4分钟前
wanci应助佳哥闯天下采纳,获得10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134020
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768807
捐赠科研通 2440219
什么是DOI,文献DOI怎么找? 1297340
科研通“疑难数据库(出版商)”最低求助积分说明 624925
版权声明 600792