Robust Temperature and Gas Concentration Imaging by LAS Tomography with Adaptive Basis Function Fitting and Artifact Removal

工件(错误) 断层摄影术 基础(线性代数) 功能(生物学) 温度测量 迭代重建 基函数 计算机科学 材料科学 物理 人工智能 数学 光学 数学分析 热力学 几何学 进化生物学 生物
作者
Xiaoqian Zhang,Lijun Xu,Jinting Wen,Kai Zhao,Zhang Cao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11
标识
DOI:10.1109/tim.2024.3400350
摘要

Laser absorption spectroscopy (LAS) tomography is an effective method for cross-sectional imaging of temperature and gas concentration distributions in combustion diagnosis. In this paper, the adaptive basis function fitting and artifact removal method is proposed to realize robust imaging in LAS tomography. Modified Mexican hat functions are introduced as basis functions to depict continuous distributions in the region of interest (ROI). Adaptive basis function fitting is realized by introducing a second reconstruction with core parameters of basis functions, the scale factors and center points, determined adaptively from the first reconstruction. After obtaining the integral absorbance densities of two different spectral lines by adaptive basis function fitting, the similarity between their ratio and one of them is used to locate and remove the artifacts in reconstructed temperature images. The proposed method yields less artifacts and shows stronger noise immunity. The temperature image error can decrease by 12% at high noise levels. Dynamic flames of a Mckenna burner were measured and temperature images with less artifacts were achieved. In an acoustically excited Bunsen burner, the proposed method precisely extracted the fundamental frequency and acoustical excitation frequency and yielded higher structural similarity index. For a high temperature wind tunnel, the maximum relative error of temperature in the center of the imaging region was 5.43% and the robustness of the proposed method in practical applications was verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助ttt采纳,获得10
刚刚
1秒前
宇少爱学习哟完成签到,获得积分10
1秒前
阿纯完成签到,获得积分10
1秒前
123发布了新的文献求助20
2秒前
无语的稀完成签到,获得积分10
2秒前
阿泽完成签到,获得积分10
2秒前
lutos发布了新的文献求助30
2秒前
BeeC001完成签到,获得积分10
3秒前
3秒前
文艺的冷风完成签到 ,获得积分10
3秒前
脑洞疼应助kjh采纳,获得10
3秒前
星辰大海应助林林采纳,获得10
3秒前
小吴完成签到,获得积分10
4秒前
Ava应助豪的花花采纳,获得10
4秒前
porcelain完成签到,获得积分10
4秒前
知鱼完成签到,获得积分10
4秒前
CodeCraft应助YuGe采纳,获得10
4秒前
4秒前
musei发布了新的文献求助10
4秒前
5秒前
justsoso完成签到,获得积分10
5秒前
呆萌的冰姬完成签到 ,获得积分10
5秒前
彼岸完成签到,获得积分20
5秒前
jason完成签到,获得积分10
5秒前
歌德商务楼完成签到,获得积分10
5秒前
hkh发布了新的文献求助10
6秒前
Ysj完成签到,获得积分10
7秒前
xiaoliuyaonuli完成签到 ,获得积分10
7秒前
知鱼发布了新的文献求助10
7秒前
积极墨镜完成签到,获得积分10
7秒前
8秒前
孙一应助吴硫采纳,获得10
8秒前
moya驳回了赘婿应助
9秒前
9秒前
10秒前
坚强的哈密瓜完成签到,获得积分10
10秒前
likes发布了新的文献求助10
11秒前
广东发布了新的文献求助10
11秒前
脑洞疼应助幸福大白采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
连铸钢板坯低倍组织缺陷评级图 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700658
求助须知:如何正确求助?哪些是违规求助? 3250908
关于积分的说明 9872028
捐赠科研通 2962927
什么是DOI,文献DOI怎么找? 1624903
邀请新用户注册赠送积分活动 769618
科研通“疑难数据库(出版商)”最低求助积分说明 742384