Artificial intelligence-based classification of breast lesion from contrast enhanced mammography: a multicenter study

医学 人工智能 乳腺摄影术 试验装置 乳腺癌 接收机工作特性 深度学习 机器学习 乳腺癌 分类器(UML) 放射科 癌症 计算机科学 内科学
作者
Haicheng Zhang,Fan Lin,Tiantian Zheng,Jing Gao,Zhongyi Wang,Zhang Kun,Xiang Zhang,Cong Xu,Feng Zhao,Haizhu Xie,Qin Li,Kejiang Cao,Yajia Gu,Ning Mao
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (5): 2593-2603
标识
DOI:10.1097/js9.0000000000001076
摘要

Purpose: The authors aimed to establish an artificial intelligence (AI)-based method for preoperative diagnosis of breast lesions from contrast enhanced mammography (CEM) and to explore its biological mechanism. Materials and methods: This retrospective study includes 1430 eligible patients who underwent CEM examination from June 2017 to July 2022 and were divided into a construction set ( n =1101), an internal test set ( n =196), and a pooled external test set ( n =133). The AI model adopted RefineNet as a backbone network, and an attention sub-network, named convolutional block attention module (CBAM), was built upon the backbone for adaptive feature refinement. An XGBoost classifier was used to integrate the refined deep learning features with clinical characteristics to differentiate benign and malignant breast lesions. The authors further retrained the AI model to distinguish in situ and invasive carcinoma among breast cancer candidates. RNA-sequencing data from 12 patients were used to explore the underlying biological basis of the AI prediction. Results: The AI model achieved an area under the curve of 0.932 in diagnosing benign and malignant breast lesions in the pooled external test set, better than the best-performing deep learning model, radiomics model, and radiologists. Moreover, the AI model has also achieved satisfactory results (an area under the curve from 0.788 to 0.824) for the diagnosis of in situ and invasive carcinoma in the test sets. Further, the biological basis exploration revealed that the high-risk group was associated with the pathways such as extracellular matrix organization. Conclusions: The AI model based on CEM and clinical characteristics had good predictive performance in the diagnosis of breast lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研废物采纳,获得10
1秒前
高兴冬灵发布了新的文献求助10
1秒前
2秒前
深情不弱发布了新的文献求助10
2秒前
晴心完成签到,获得积分10
3秒前
4秒前
JamesPei应助大布采纳,获得20
5秒前
5秒前
7秒前
xl给小魏不睡觉的求助进行了留言
10秒前
10秒前
11秒前
陈泽宇发布了新的文献求助10
11秒前
12秒前
亦屿森发布了新的文献求助10
12秒前
13秒前
醉舞烟罗发布了新的文献求助10
14秒前
adamchris完成签到,获得积分10
15秒前
GuoZheng完成签到,获得积分10
15秒前
陈泽宇完成签到,获得积分10
17秒前
Min完成签到,获得积分20
17秒前
18秒前
我爱学术完成签到,获得积分10
18秒前
酷波er应助醉舞烟罗采纳,获得10
20秒前
小兰应助vica采纳,获得30
20秒前
亦屿森完成签到,获得积分10
21秒前
清爽的薄荷关注了科研通微信公众号
21秒前
Min发布了新的文献求助30
22秒前
了又柳发布了新的文献求助10
24秒前
nanan完成签到,获得积分10
25秒前
26秒前
27秒前
传奇3应助霸气的又琴采纳,获得20
27秒前
橙子完成签到,获得积分10
28秒前
六个核桃发布了新的文献求助10
29秒前
NexusExplorer应助nanan采纳,获得30
29秒前
思源应助B612小行星采纳,获得10
31秒前
顾矜应助GuoZheng采纳,获得10
31秒前
33秒前
CodeCraft应助高兴冬灵采纳,获得30
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161577
求助须知:如何正确求助?哪些是违规求助? 2812863
关于积分的说明 7897487
捐赠科研通 2471775
什么是DOI,文献DOI怎么找? 1316151
科研通“疑难数据库(出版商)”最低求助积分说明 631219
版权声明 602112