亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Light Gradient Boosting Machine-Based Low–Slow–Small Target Detection Algorithm for Airborne Radar

计算机科学 遥感 雷达 人工智能 算法 地质学 电信
作者
Jing Liu,Pengcheng Huang,Cao Zeng,Guisheng Liao,Jingwei Xu,Haihong Tao,Filbert H. Juwono
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (10): 1737-1737
标识
DOI:10.3390/rs16101737
摘要

For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative flying LSS targets becoming of widespread concern, and the low signal-to-clutter ratio (SCR) of LSS targets results in the targets being particularly easily overwhelmed by the clutter. In this paper, a novel light gradient boosting machine (LightGBM)-based LSS target detection algorithm for airborne radar is proposed. The proposed method, based on the current real-time clutter environment of the range cell to be detected, firstly designs a specific real-time space-time LSS target signal repository with special dimensions and structures. Then, the proposed method creatively designs a new fast-built real-time training feature dataset specifically for the LSS target and the current clutter, together with a series of unique data transformations, sample selection, data restructuring, feature extraction, and feature processing. Finally, the proposed method develops a unique machine learning-based LSS target detection classifier model for the designed training dataset, by fully excavating and utilizing the advantages of the ensemble decision trees-based LightGBM. Consequently, the pre-processed data in the range cell of interest are classified using the proposed algorithm, which achieves LSS target detection by evaluating the output results of the designed classifier. Compared with the traditional classical target detection methods, the proposed algorithm is capable of providing markedly superior performance for LSS target detection. With an appropriate computational time, the proposed algorithm attains the highest probability of detecting LSS targets under the low SCR. The simulation outcomes and detection results with the experimental data are employed to validate the effectiveness and merits of the proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
嘟嘟嘟嘟发布了新的文献求助10
4秒前
11秒前
12秒前
Yuuw完成签到,获得积分10
12秒前
14秒前
Dawn发布了新的文献求助10
16秒前
琥珀三文发布了新的文献求助10
18秒前
23秒前
遇见馅儿饼完成签到,获得积分10
23秒前
华仔应助琥珀三文采纳,获得10
25秒前
顾矜应助遇见馅儿饼采纳,获得10
29秒前
34秒前
负责代珊完成签到,获得积分20
36秒前
Wiiing完成签到,获得积分10
37秒前
37秒前
38秒前
40秒前
40秒前
Wiiing发布了新的文献求助10
41秒前
hyhyhyhy发布了新的文献求助10
42秒前
负责代珊发布了新的文献求助10
44秒前
46秒前
老天师一巴掌完成签到 ,获得积分10
53秒前
53秒前
江旭晴发布了新的文献求助10
56秒前
负责代珊发布了新的文献求助10
56秒前
hyhyhyhy发布了新的文献求助10
1分钟前
大个应助Jello采纳,获得10
1分钟前
香蕉觅云应助PO采纳,获得10
1分钟前
打打应助负责代珊采纳,获得10
1分钟前
大模型应助迷途小书童采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
linkman发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助hyhyhyhy采纳,获得10
1分钟前
江旭晴完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509411
求助须知:如何正确求助?哪些是违规求助? 4604320
关于积分的说明 14489649
捐赠科研通 4539087
什么是DOI,文献DOI怎么找? 2487289
邀请新用户注册赠送积分活动 1469742
关于科研通互助平台的介绍 1441992