Light Gradient Boosting Machine-Based Low–Slow–Small Target Detection Algorithm for Airborne Radar

计算机科学 遥感 雷达 人工智能 算法 地质学 电信
作者
Jing Liu,Pengcheng Huang,Cao Zeng,Guisheng Liao,Jingwei Xu,Haihong Tao,Filbert H. Juwono
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (10): 1737-1737
标识
DOI:10.3390/rs16101737
摘要

For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative flying LSS targets becoming of widespread concern, and the low signal-to-clutter ratio (SCR) of LSS targets results in the targets being particularly easily overwhelmed by the clutter. In this paper, a novel light gradient boosting machine (LightGBM)-based LSS target detection algorithm for airborne radar is proposed. The proposed method, based on the current real-time clutter environment of the range cell to be detected, firstly designs a specific real-time space-time LSS target signal repository with special dimensions and structures. Then, the proposed method creatively designs a new fast-built real-time training feature dataset specifically for the LSS target and the current clutter, together with a series of unique data transformations, sample selection, data restructuring, feature extraction, and feature processing. Finally, the proposed method develops a unique machine learning-based LSS target detection classifier model for the designed training dataset, by fully excavating and utilizing the advantages of the ensemble decision trees-based LightGBM. Consequently, the pre-processed data in the range cell of interest are classified using the proposed algorithm, which achieves LSS target detection by evaluating the output results of the designed classifier. Compared with the traditional classical target detection methods, the proposed algorithm is capable of providing markedly superior performance for LSS target detection. With an appropriate computational time, the proposed algorithm attains the highest probability of detecting LSS targets under the low SCR. The simulation outcomes and detection results with the experimental data are employed to validate the effectiveness and merits of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxiao发布了新的文献求助20
1秒前
2秒前
CipherSage应助丈八二桃采纳,获得10
2秒前
JamesPei应助大力翠丝采纳,获得10
3秒前
福西西发布了新的文献求助10
3秒前
4秒前
蜂蜜柚子发布了新的文献求助50
4秒前
lin完成签到,获得积分10
5秒前
5秒前
7秒前
7秒前
脑洞疼应助NK001采纳,获得30
7秒前
乐乐应助zwenng采纳,获得10
8秒前
8秒前
naitangkeke发布了新的文献求助30
9秒前
科研通AI2S应助llg采纳,获得10
9秒前
林和完成签到 ,获得积分10
10秒前
星辰大海应助SS1988采纳,获得10
11秒前
11秒前
12秒前
科研通AI2S应助cannon8采纳,获得10
12秒前
13秒前
学霸发布了新的文献求助10
13秒前
14秒前
在水一方应助yy123采纳,获得10
14秒前
tutulunzi发布了新的文献求助10
15秒前
15秒前
肉卷完成签到 ,获得积分10
16秒前
18秒前
18秒前
18秒前
18秒前
搬砖民工完成签到,获得积分10
19秒前
ding应助学霸采纳,获得10
19秒前
lz发布了新的文献求助10
19秒前
ShengQ完成签到,获得积分10
19秒前
活泼的以亦完成签到,获得积分10
20秒前
zwenng发布了新的文献求助10
20秒前
张三坟应助科研通管家采纳,获得30
21秒前
今后应助科研通管家采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079267
求助须知:如何正确求助?哪些是违规求助? 2731896
关于积分的说明 7521337
捐赠科研通 2380638
什么是DOI,文献DOI怎么找? 1262413
科研通“疑难数据库(出版商)”最低求助积分说明 611928
版权声明 597414