Light Gradient Boosting Machine-Based Low–Slow–Small Target Detection Algorithm for Airborne Radar

计算机科学 遥感 雷达 人工智能 算法 地质学 电信
作者
Jing Liu,Pengcheng Huang,Cao Zeng,Guisheng Liao,Jingwei Xu,Haihong Tao,Filbert H. Juwono
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (10): 1737-1737
标识
DOI:10.3390/rs16101737
摘要

For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative flying LSS targets becoming of widespread concern, and the low signal-to-clutter ratio (SCR) of LSS targets results in the targets being particularly easily overwhelmed by the clutter. In this paper, a novel light gradient boosting machine (LightGBM)-based LSS target detection algorithm for airborne radar is proposed. The proposed method, based on the current real-time clutter environment of the range cell to be detected, firstly designs a specific real-time space-time LSS target signal repository with special dimensions and structures. Then, the proposed method creatively designs a new fast-built real-time training feature dataset specifically for the LSS target and the current clutter, together with a series of unique data transformations, sample selection, data restructuring, feature extraction, and feature processing. Finally, the proposed method develops a unique machine learning-based LSS target detection classifier model for the designed training dataset, by fully excavating and utilizing the advantages of the ensemble decision trees-based LightGBM. Consequently, the pre-processed data in the range cell of interest are classified using the proposed algorithm, which achieves LSS target detection by evaluating the output results of the designed classifier. Compared with the traditional classical target detection methods, the proposed algorithm is capable of providing markedly superior performance for LSS target detection. With an appropriate computational time, the proposed algorithm attains the highest probability of detecting LSS targets under the low SCR. The simulation outcomes and detection results with the experimental data are employed to validate the effectiveness and merits of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助3333333采纳,获得10
刚刚
可鹿丽发布了新的文献求助10
2秒前
天成浩子完成签到 ,获得积分10
2秒前
莱贝特发布了新的文献求助10
2秒前
爆米花应助xiaoyi采纳,获得10
3秒前
yuan完成签到,获得积分10
4秒前
5秒前
美好斓发布了新的文献求助10
5秒前
潇洒甜瓜发布了新的文献求助10
5秒前
长江长发布了新的文献求助10
5秒前
6秒前
7秒前
Jilin完成签到 ,获得积分10
7秒前
研友_VZG7GZ应助Martina采纳,获得10
8秒前
晓晓雪完成签到 ,获得积分10
9秒前
9秒前
JamesPei应助北港十里巷采纳,获得10
9秒前
大头完成签到 ,获得积分10
10秒前
大林发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
啵啵啵小太阳完成签到,获得积分10
11秒前
皮皮灰熊应助长江长采纳,获得10
11秒前
科研通AI5应助Evaporate采纳,获得10
11秒前
学术小白发布了新的文献求助10
12秒前
乐乐应助刘耿耿采纳,获得50
12秒前
zwzw1314完成签到,获得积分10
14秒前
科研通AI5应助素笺生花采纳,获得10
15秒前
15秒前
夏夏发布了新的文献求助10
16秒前
16秒前
16秒前
小刘完成签到,获得积分10
17秒前
脑洞疼应助honger采纳,获得10
17秒前
情怀应助yangyajie采纳,获得10
17秒前
18秒前
英俊的铭应助硕士狗采纳,获得10
18秒前
林lin完成签到,获得积分10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559313
求助须知:如何正确求助?哪些是违规求助? 3133962
关于积分的说明 9404827
捐赠科研通 2834076
什么是DOI,文献DOI怎么找? 1557790
邀请新用户注册赠送积分活动 727704
科研通“疑难数据库(出版商)”最低求助积分说明 716399