Light Gradient Boosting Machine-Based Low–Slow–Small Target Detection Algorithm for Airborne Radar

计算机科学 遥感 雷达 人工智能 算法 地质学 电信
作者
Jing Liu,Pengcheng Huang,Cao Zeng,Guisheng Liao,Jingwei Xu,Haihong Tao,Filbert H. Juwono
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (10): 1737-1737
标识
DOI:10.3390/rs16101737
摘要

For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative flying LSS targets becoming of widespread concern, and the low signal-to-clutter ratio (SCR) of LSS targets results in the targets being particularly easily overwhelmed by the clutter. In this paper, a novel light gradient boosting machine (LightGBM)-based LSS target detection algorithm for airborne radar is proposed. The proposed method, based on the current real-time clutter environment of the range cell to be detected, firstly designs a specific real-time space-time LSS target signal repository with special dimensions and structures. Then, the proposed method creatively designs a new fast-built real-time training feature dataset specifically for the LSS target and the current clutter, together with a series of unique data transformations, sample selection, data restructuring, feature extraction, and feature processing. Finally, the proposed method develops a unique machine learning-based LSS target detection classifier model for the designed training dataset, by fully excavating and utilizing the advantages of the ensemble decision trees-based LightGBM. Consequently, the pre-processed data in the range cell of interest are classified using the proposed algorithm, which achieves LSS target detection by evaluating the output results of the designed classifier. Compared with the traditional classical target detection methods, the proposed algorithm is capable of providing markedly superior performance for LSS target detection. With an appropriate computational time, the proposed algorithm attains the highest probability of detecting LSS targets under the low SCR. The simulation outcomes and detection results with the experimental data are employed to validate the effectiveness and merits of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XDF完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
12A完成签到,获得积分10
6秒前
小心科研完成签到,获得积分10
9秒前
喵了个咪完成签到 ,获得积分10
10秒前
张尿尿完成签到 ,获得积分10
14秒前
Cold-Drink-Shop完成签到,获得积分10
14秒前
21秒前
liao_duoduo完成签到,获得积分10
23秒前
周周南发布了新的文献求助10
24秒前
灵巧的十八完成签到 ,获得积分10
24秒前
yoga完成签到 ,获得积分10
25秒前
Hiram完成签到,获得积分10
31秒前
微笑冰棍完成签到 ,获得积分10
31秒前
UUU完成签到 ,获得积分10
33秒前
赘婿应助难搞哦采纳,获得10
34秒前
爆米花应助难搞哦采纳,获得10
34秒前
比比谁的速度快应助难搞哦采纳,获得100
34秒前
华仔应助难搞哦采纳,获得10
34秒前
微暖完成签到,获得积分0
35秒前
贰鸟完成签到,获得积分0
39秒前
chenmeimei2012完成签到 ,获得积分10
40秒前
1002SHIB完成签到,获得积分10
44秒前
nihaolaojiu完成签到,获得积分10
44秒前
Bryan应助科研通管家采纳,获得10
44秒前
sheetung完成签到,获得积分10
44秒前
麦田麦兜完成签到,获得积分10
45秒前
hadfunsix完成签到 ,获得积分10
49秒前
Thien应助贝塔采纳,获得10
50秒前
hyl-tcm完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
高高的天亦完成签到 ,获得积分10
1分钟前
贝塔完成签到,获得积分10
1分钟前
周周南发布了新的文献求助10
1分钟前
七人七发布了新的文献求助10
1分钟前
1分钟前
mengmenglv完成签到 ,获得积分10
1分钟前
宓天问发布了新的文献求助10
1分钟前
thchiang发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008669
求助须知:如何正确求助?哪些是违规求助? 3548328
关于积分的说明 11298785
捐赠科研通 3283020
什么是DOI,文献DOI怎么找? 1810281
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218