DUF-Net: A Retinal Vessel Segmentation Method Integrating Global and Local Features with Skeleton Fitting Assistance

骨架(计算机编程) 分割 人工智能 视网膜 计算机视觉 计算机科学 模式识别(心理学) 医学 眼科 程序设计语言
作者
Xuelin Xu,Lin Ren,Jianwei Chen,Huabin He
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150408
摘要

Assisted evaluation through retinal vessel segmentation facilitates the early prevention and diagnosis of retinal lesions. To address the scarcity of medical samples, current research commonly employs image patching techniques to augment the training dataset. However, the vascular features in fundus images exhibit complex distribution, patch-based methods frequently encounter the challenge of isolated patches lacking contextual information, consequently resulting in issues such as vessel discontinuity and loss. Additionally, there are a higher number of samples with strong contrast vessels compared to those with weak contrast vessels in retinal images. Moreover, within individual patches, there are more pixels of strong contrast vessels compared to weak contrast vessels, leading to lower segmentation accuracy for small vessels. Hence, this study introduces a patch-based deep neural network method for retinal vessel segmentation to address the issues. Firstly, a novel architecture, termed Double U-Net with a Feature Fusion Module (DUF-Net), is proposed. This network structure effectively supplements missing contextual information and improves the problem of vessel discontinuity. Furthermore, an algorithm is introduced to classify vascular patches based on their contrast levels. Subsequently, conventional data augmentation methods were employed to achieve a balance in the number of samples with strong and weak contrast vessels. Additionally, method with skeleton fitting assistance is introduced to improve the segmentation of vessels with weak contrast. Finally, the proposed method is evaluated across four publicly available datasets: DRIVE, CHASE_DB1, STARE, and HRF. The results demonstrate that the proposed method effectively ensures the continuity of segmented blood vessels while maintaining accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王超超完成签到,获得积分10
刚刚
刚刚
圈圈发布了新的文献求助10
1秒前
狼来了aas完成签到,获得积分10
1秒前
1秒前
大胆的莛发布了新的文献求助10
2秒前
文静的信封完成签到,获得积分10
2秒前
CipherSage应助wu采纳,获得10
2秒前
科目三应助震666采纳,获得30
2秒前
April发布了新的文献求助10
3秒前
加菲丰丰应助猫橘汽水采纳,获得30
3秒前
阳光海云完成签到,获得积分10
3秒前
4秒前
攒一口袋星星完成签到,获得积分10
4秒前
alwry完成签到,获得积分10
4秒前
eyebrow完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
小胖鱼完成签到,获得积分20
5秒前
Grayball应助啊这啥啊这是采纳,获得10
6秒前
cf完成签到,获得积分10
6秒前
王一线完成签到,获得积分10
7秒前
7秒前
7秒前
栗子完成签到,获得积分10
7秒前
bkagyin应助格格星采纳,获得10
8秒前
Youdge完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
yyf发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
Mian发布了新的文献求助10
10秒前
完美世界应助张静静采纳,获得10
10秒前
wu完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740