亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DUF-Net: A Retinal Vessel Segmentation Method Integrating Global and Local Features with Skeleton Fitting Assistance

骨架(计算机编程) 分割 人工智能 视网膜 计算机视觉 计算机科学 模式识别(心理学) 医学 眼科 程序设计语言
作者
Xuelin Xu,Lin Ren,Jianwei Chen,Huabin He
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150408
摘要

Assisted evaluation through retinal vessel segmentation facilitates the early prevention and diagnosis of retinal lesions. To address the scarcity of medical samples, current research commonly employs image patching techniques to augment the training dataset. However, the vascular features in fundus images exhibit complex distribution, patch-based methods frequently encounter the challenge of isolated patches lacking contextual information, consequently resulting in issues such as vessel discontinuity and loss. Additionally, there are a higher number of samples with strong contrast vessels compared to those with weak contrast vessels in retinal images. Moreover, within individual patches, there are more pixels of strong contrast vessels compared to weak contrast vessels, leading to lower segmentation accuracy for small vessels. Hence, this study introduces a patch-based deep neural network method for retinal vessel segmentation to address the issues. Firstly, a novel architecture, termed Double U-Net with a Feature Fusion Module (DUF-Net), is proposed. This network structure effectively supplements missing contextual information and improves the problem of vessel discontinuity. Furthermore, an algorithm is introduced to classify vascular patches based on their contrast levels. Subsequently, conventional data augmentation methods were employed to achieve a balance in the number of samples with strong and weak contrast vessels. Additionally, method with skeleton fitting assistance is introduced to improve the segmentation of vessels with weak contrast. Finally, the proposed method is evaluated across four publicly available datasets: DRIVE, CHASE_DB1, STARE, and HRF. The results demonstrate that the proposed method effectively ensures the continuity of segmented blood vessels while maintaining accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助TXZ06采纳,获得10
2秒前
6秒前
7秒前
7秒前
云溪关注了科研通微信公众号
7秒前
8秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
11秒前
24秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
25秒前
杨涵完成签到 ,获得积分10
26秒前
27秒前
九月发布了新的文献求助10
31秒前
33秒前
云溪发布了新的文献求助20
34秒前
TXZ06发布了新的文献求助10
38秒前
45秒前
45秒前
华仔应助科研通管家采纳,获得10
50秒前
morena应助科研通管家采纳,获得10
50秒前
劉浏琉应助科研通管家采纳,获得10
50秒前
劉浏琉应助科研通管家采纳,获得10
50秒前
qqx应助科研通管家采纳,获得10
50秒前
完美世界应助科研通管家采纳,获得10
50秒前
Jasper应助雪霁采纳,获得10
54秒前
58秒前
louqianyang完成签到 ,获得积分10
1分钟前
1分钟前
狂暴战士完成签到 ,获得积分10
1分钟前
顾灵毓发布了新的文献求助20
1分钟前
1分钟前
1分钟前
杜大帅发布了新的文献求助10
1分钟前
负责不愁完成签到,获得积分10
1分钟前
1分钟前
feiCheung完成签到 ,获得积分10
1分钟前
负责不愁发布了新的文献求助10
1分钟前
凌香芦发布了新的文献求助10
2分钟前
杜大帅完成签到,获得积分10
2分钟前
阿朱完成签到 ,获得积分10
2分钟前
陶醉的怀绿完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788346
求助须知:如何正确求助?哪些是违规求助? 5706422
关于积分的说明 15473418
捐赠科研通 4916427
什么是DOI,文献DOI怎么找? 2646333
邀请新用户注册赠送积分活动 1593998
关于科研通互助平台的介绍 1548436