DUF-Net: A Retinal Vessel Segmentation Method Integrating Global and Local Features with Skeleton Fitting Assistance

骨架(计算机编程) 分割 人工智能 视网膜 计算机视觉 计算机科学 模式识别(心理学) 医学 眼科 程序设计语言
作者
Xuelin Xu,Lin Ren,Jianwei Chen,Huabin He
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150408
摘要

Assisted evaluation through retinal vessel segmentation facilitates the early prevention and diagnosis of retinal lesions. To address the scarcity of medical samples, current research commonly employs image patching techniques to augment the training dataset. However, the vascular features in fundus images exhibit complex distribution, patch-based methods frequently encounter the challenge of isolated patches lacking contextual information, consequently resulting in issues such as vessel discontinuity and loss. Additionally, there are a higher number of samples with strong contrast vessels compared to those with weak contrast vessels in retinal images. Moreover, within individual patches, there are more pixels of strong contrast vessels compared to weak contrast vessels, leading to lower segmentation accuracy for small vessels. Hence, this study introduces a patch-based deep neural network method for retinal vessel segmentation to address the issues. Firstly, a novel architecture, termed Double U-Net with a Feature Fusion Module (DUF-Net), is proposed. This network structure effectively supplements missing contextual information and improves the problem of vessel discontinuity. Furthermore, an algorithm is introduced to classify vascular patches based on their contrast levels. Subsequently, conventional data augmentation methods were employed to achieve a balance in the number of samples with strong and weak contrast vessels. Additionally, method with skeleton fitting assistance is introduced to improve the segmentation of vessels with weak contrast. Finally, the proposed method is evaluated across four publicly available datasets: DRIVE, CHASE_DB1, STARE, and HRF. The results demonstrate that the proposed method effectively ensures the continuity of segmented blood vessels while maintaining accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiao完成签到,获得积分10
1秒前
徐瑶瑶发布了新的文献求助10
3秒前
天真之桃发布了新的文献求助10
4秒前
5秒前
8秒前
酷炫的毛巾应助木棉采纳,获得10
8秒前
山君完成签到,获得积分10
9秒前
10秒前
biekanwo发布了新的文献求助10
10秒前
bkagyin应助爱笑半雪采纳,获得10
11秒前
酷炫的毛巾应助chao采纳,获得10
12秒前
12秒前
懒羊羊发布了新的文献求助10
13秒前
13秒前
aaaaaYue完成签到,获得积分20
14秒前
17秒前
我是老大应助徐瑶瑶采纳,获得10
17秒前
sci发布了新的文献求助30
18秒前
18秒前
18秒前
Hello应助清脆靳采纳,获得10
18秒前
19秒前
111完成签到 ,获得积分10
20秒前
彭于晏应助开天神秀采纳,获得10
20秒前
21秒前
aaaaaYue发布了新的文献求助30
22秒前
汉堡包应助余杭村王小虎采纳,获得10
22秒前
bkagyin应助宁洛尘采纳,获得10
22秒前
侠与虾发布了新的文献求助10
23秒前
天真之桃完成签到,获得积分10
24秒前
乐乐完成签到,获得积分10
24秒前
25秒前
傻傻的宛白完成签到,获得积分10
26秒前
28秒前
徐瑶瑶完成签到,获得积分10
29秒前
yaodd发布了新的文献求助10
31秒前
wanci应助biekanwo采纳,获得10
32秒前
32秒前
33秒前
Leo发布了新的文献求助10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310147
求助须知:如何正确求助?哪些是违规求助? 2943193
关于积分的说明 8512994
捐赠科研通 2618403
什么是DOI,文献DOI怎么找? 1431061
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649540