亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DUF-Net: A Retinal Vessel Segmentation Method Integrating Global and Local Features with Skeleton Fitting Assistance

骨架(计算机编程) 分割 人工智能 视网膜 计算机视觉 计算机科学 模式识别(心理学) 医学 眼科 程序设计语言
作者
Xuelin Xu,Lin Ren,Jianwei Chen,Huabin He
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150408
摘要

Assisted evaluation through retinal vessel segmentation facilitates the early prevention and diagnosis of retinal lesions. To address the scarcity of medical samples, current research commonly employs image patching techniques to augment the training dataset. However, the vascular features in fundus images exhibit complex distribution, patch-based methods frequently encounter the challenge of isolated patches lacking contextual information, consequently resulting in issues such as vessel discontinuity and loss. Additionally, there are a higher number of samples with strong contrast vessels compared to those with weak contrast vessels in retinal images. Moreover, within individual patches, there are more pixels of strong contrast vessels compared to weak contrast vessels, leading to lower segmentation accuracy for small vessels. Hence, this study introduces a patch-based deep neural network method for retinal vessel segmentation to address the issues. Firstly, a novel architecture, termed Double U-Net with a Feature Fusion Module (DUF-Net), is proposed. This network structure effectively supplements missing contextual information and improves the problem of vessel discontinuity. Furthermore, an algorithm is introduced to classify vascular patches based on their contrast levels. Subsequently, conventional data augmentation methods were employed to achieve a balance in the number of samples with strong and weak contrast vessels. Additionally, method with skeleton fitting assistance is introduced to improve the segmentation of vessels with weak contrast. Finally, the proposed method is evaluated across four publicly available datasets: DRIVE, CHASE_DB1, STARE, and HRF. The results demonstrate that the proposed method effectively ensures the continuity of segmented blood vessels while maintaining accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助香菜张采纳,获得10
刚刚
顾矜应助白华苍松采纳,获得10
22秒前
43秒前
wanci应助renren采纳,获得10
44秒前
49秒前
50秒前
香菜张发布了新的文献求助10
53秒前
NattyPoe完成签到,获得积分10
1分钟前
zxcvvbb1001完成签到 ,获得积分10
1分钟前
1分钟前
renren发布了新的文献求助10
1分钟前
1分钟前
Yuki完成签到 ,获得积分10
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
领导范儿应助科研通管家采纳,获得30
2分钟前
2分钟前
vbnn完成签到 ,获得积分10
2分钟前
3分钟前
沙海沉戈完成签到,获得积分0
4分钟前
今后应助ceeray23采纳,获得20
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
情怀应助ceeray23采纳,获得20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
ceeray23发布了新的文献求助20
5分钟前
5分钟前
ceeray23发布了新的文献求助20
5分钟前
香菜张发布了新的文献求助10
5分钟前
6分钟前
6分钟前
znchick完成签到,获得积分10
6分钟前
BowieHuang应助Wei采纳,获得10
7分钟前
Raunio完成签到,获得积分10
7分钟前
7分钟前
souther完成签到,获得积分0
7分钟前
小王完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529261
求助须知:如何正确求助?哪些是违规求助? 4618429
关于积分的说明 14562611
捐赠科研通 4557443
什么是DOI,文献DOI怎么找? 2497532
邀请新用户注册赠送积分活动 1477742
关于科研通互助平台的介绍 1449173