DUF-Net: A Retinal Vessel Segmentation Method Integrating Global and Local Features with Skeleton Fitting Assistance

骨架(计算机编程) 分割 人工智能 视网膜 计算机视觉 计算机科学 模式识别(心理学) 医学 眼科 程序设计语言
作者
Xuelin Xu,Lin Ren,Jianwei Chen,Huabin He
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150408
摘要

Assisted evaluation through retinal vessel segmentation facilitates the early prevention and diagnosis of retinal lesions. To address the scarcity of medical samples, current research commonly employs image patching techniques to augment the training dataset. However, the vascular features in fundus images exhibit complex distribution, patch-based methods frequently encounter the challenge of isolated patches lacking contextual information, consequently resulting in issues such as vessel discontinuity and loss. Additionally, there are a higher number of samples with strong contrast vessels compared to those with weak contrast vessels in retinal images. Moreover, within individual patches, there are more pixels of strong contrast vessels compared to weak contrast vessels, leading to lower segmentation accuracy for small vessels. Hence, this study introduces a patch-based deep neural network method for retinal vessel segmentation to address the issues. Firstly, a novel architecture, termed Double U-Net with a Feature Fusion Module (DUF-Net), is proposed. This network structure effectively supplements missing contextual information and improves the problem of vessel discontinuity. Furthermore, an algorithm is introduced to classify vascular patches based on their contrast levels. Subsequently, conventional data augmentation methods were employed to achieve a balance in the number of samples with strong and weak contrast vessels. Additionally, method with skeleton fitting assistance is introduced to improve the segmentation of vessels with weak contrast. Finally, the proposed method is evaluated across four publicly available datasets: DRIVE, CHASE_DB1, STARE, and HRF. The results demonstrate that the proposed method effectively ensures the continuity of segmented blood vessels while maintaining accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SophiaHH完成签到,获得积分10
刚刚
王翠花完成签到,获得积分10
刚刚
aftale完成签到 ,获得积分10
1秒前
GGGGGG果果发布了新的文献求助10
1秒前
Eric完成签到,获得积分10
2秒前
2秒前
yy发布了新的文献求助10
3秒前
王定春完成签到,获得积分10
3秒前
所所应助唯有一个心采纳,获得10
3秒前
23421完成签到 ,获得积分10
3秒前
小马过河完成签到,获得积分10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
李爱国应助乖张采纳,获得10
4秒前
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
贪玩的半仙完成签到,获得积分10
4秒前
4秒前
王翠花发布了新的文献求助10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
yyang发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
英俊的铭应助ablexm采纳,获得10
5秒前
Hanson完成签到,获得积分10
5秒前
vvz完成签到,获得积分10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060